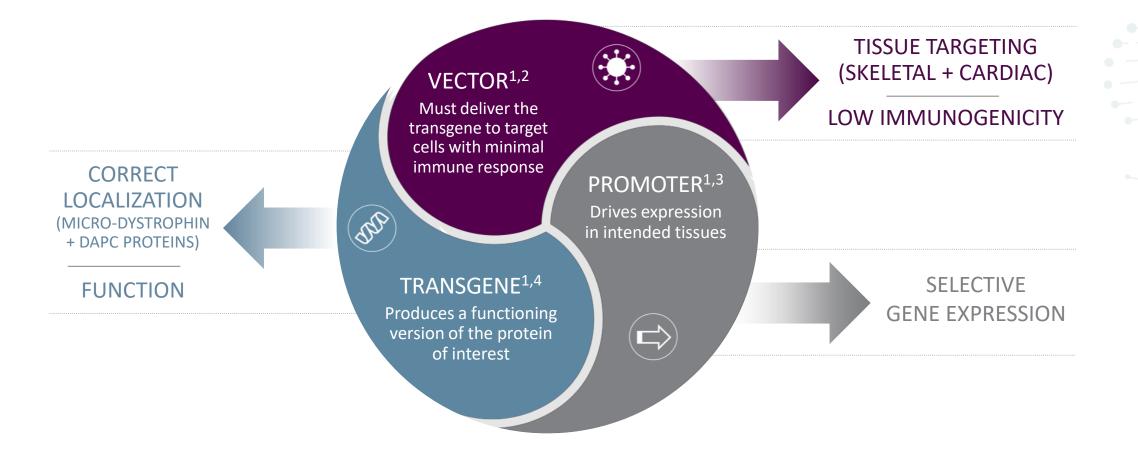


Considerations for Neuromuscular & CNS Targeted Gene Therapies

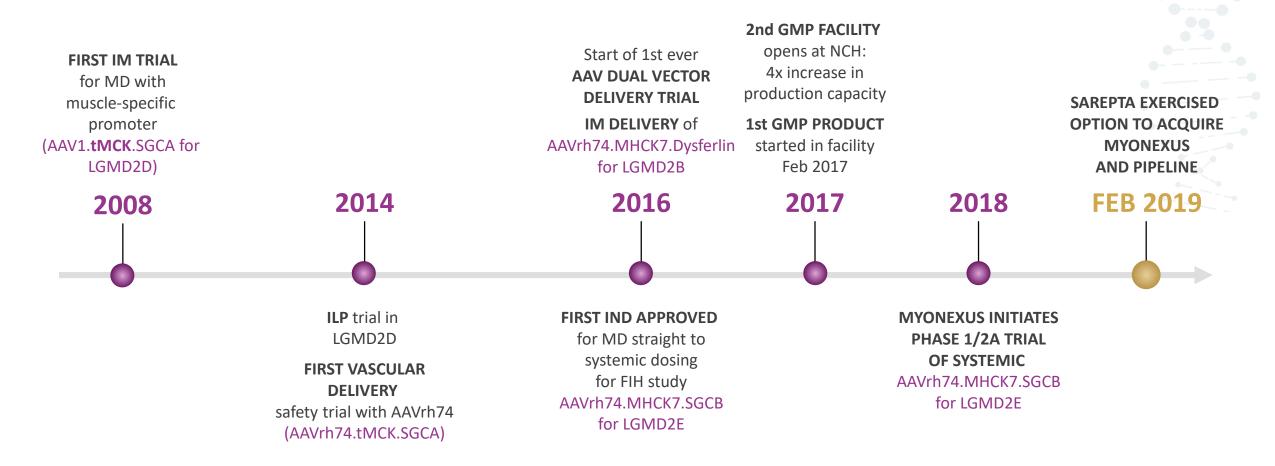
May 1, 2019

WASHINGTON, DC



Disclaimers

- AAVrh74.MHCK7.Micro-dystrophin is investigational and not approved in any country
- AAVrh74.MHCK7.beta-sarcoglycan is investigational and not approved in any country
- All pipeline therapies are investigational and have not been reviewed or approved in any country


Essential Components of Gene Therapy Development

 Naso MF, et al. *BioDrugs*. 2017;31(4):317-334.
 U.S. National Library of Medicine. Help Me Understand Genetics: *Gene Therapy*. Bethesda, Maryland: 2013. https://ghr.nlm.nih.gov/primer/therapy/genetherapy. Accessed November 15, 2018.
 Zheng C, Baum BJ, *Methods Mol Biol*. 2008;434:205-219.
 Chamberlain K, et al. *Hum Gene Ther Methods*. 2016;27(1):1-12.

AAV Gene Therapy at Nationwide Children's Hospital: Over 19 Years of Development Experience

AAV, adeno-associated virus; FIH, first-in-human; GMP, good manufacturing practice; ILP, Isolated limb perfusion; IM, intramuscular; IND, investigational new drug application; MD, muscular dystrophy. Data on file. Sarepta Therapeutics 2019.

Investment in Lacerta: Pompe & CNS-targeted Gene Therapy

- Lacerta is an AAV-based gene therapy company founded on technologies licensed from University of Florida
- August 2018: Sarepta enters into a license and option agreement with Lacerta
 - Includes access to capsid screening and proprietary OneBac manufacturing platform
 - 3 CNS development programs

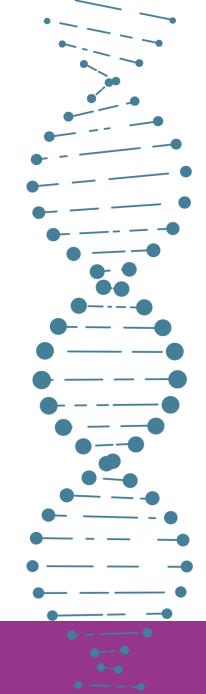
News

Sarepta Therapeutics Signs Long-term Strategic Investment and License Agreements with Lacerta Therapeutics, Gaining Rights to Multiple CNS-targeted Gene Therapy programs and Access to Important Gene Therapy Talent and Tools

August 8, 2018 - ... Long-term Strategic Investment and License Agreements with Lacerta Therapeutics, Gaining Rights to Multiple CNS-targeted ... Long-term Strategic Investment and License Agreements with Lacerta Therapeutics, Gaining Rights to Multiple CNS-targeted ... gene therapy programs, including exclusive rights to Lacerta's gene therapy candidate for Pompe Disease and ...

Partnership with Lysogene: MPSIIIA (Sanfilippo Syndrome)

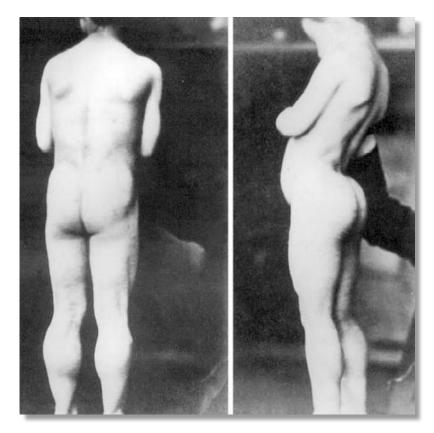
• Lysogene:


- Specialists in gene therapy development targeting CNS diseases
- October 2018:
 - Sarepta receives full commercial rights to LYS-SAF302 in the US and other ex-EUR markets
- February 2019:
 - First Patient dosed in AAVance

News

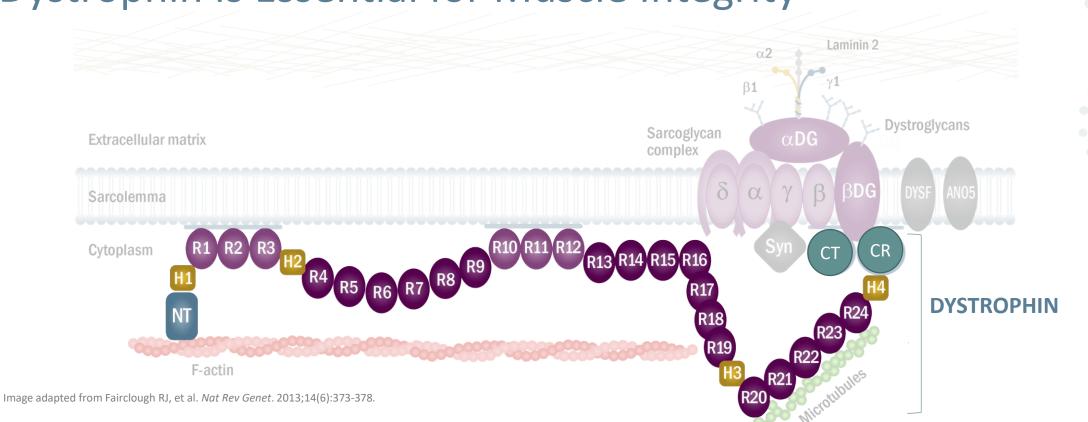
Sarepta and Lysogene Announce Exclusive License Agreement for LYS-SAF302, a Latestage Gene Therapy for the Treatment of MPS IIIA, and Grant of Option Rights to an Additional CNS Gene Therapy Candidate

October 15, 2018 - ... Sarepta and **Lysogene** Announce Exclusive License Agreement for LYS-SAF302, ... to an Additional CNS Gene Therapy Candidate Sarepta and **Lysogene** Announce Exclusive License Agreement for LYS-SAF302, ... in the U.S. and other markets outside of Europe , while **Lysogene** retains full commercial rights in Europe -- -- ...



Duchenne Muscular Dystrophy (DMD)

Duchenne Muscular Dystrophy (DMD)

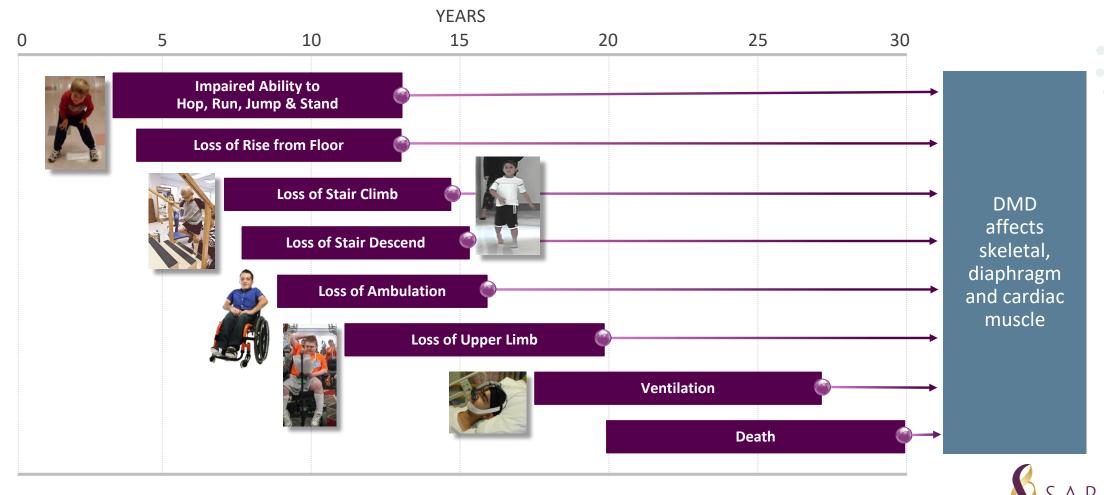

- A fatal, X-linked recessive disorder¹
 - Estimated incidence of 1 in every 3500²
 to 5000³ males born worldwide
- DMD gene mutations reduce or prevent production of dystrophin protein, essential for muscle structure, function, and preservation ^{1,4,5}
- Characterized by progressive muscle weakness and degeneration^{1,6,7}

Pictures of patient with DMD taken by Duchenne (1863)

Birkrant DJ, et al. *The Lancet Global Health*. 2018;13. 2. CDC. *MMWR Morb Mortal Wkly Rep*. 2009;58(40):1119-1122. 3. Mendell JR, et al. *Ann Neurol*. 2013;74(5):637-647.
 Kole R, et al. *Nat Rev Drug Discov*. 2012;11(2):125-140. 5. Koenig M, et al. *Am J Hum Genet*. 1989;45(4):498-506. 6. Bushby K, et al. *Lancet Neurol*. 2010;9(1):77-93.
 Verhaart IE, et al. *Hum Gene Ther*. 2012;23(3):262-273.

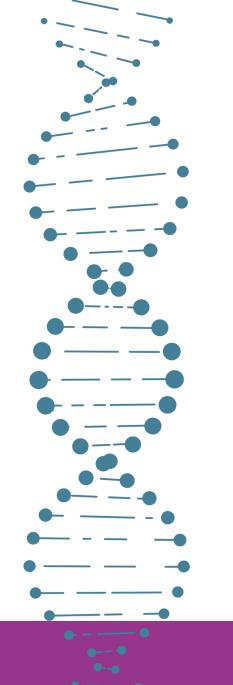
Dystrophin Is Essential for Muscle Integrity¹

Mutations in the DMD gene cause inadequate production of dystrophin protein²


ANO5, anoctamin-5; CR, cysteine-rich; CT, C-terminus; DG, dystroglycan; DYSF, dysferlin; NT, N-terminus; R, spectrin-like repeat; SG, sarcoglycan; Syn, syntrophin. 1. Verhaart IEC, Aartsma-Rus. *Neuromuscular Disorders*, InTech; 2012. https://www.intechopen.com/books/neuromuscular-disorders/aon-mediated-exon-skipping-for-duchennemuscular-dystrophy. Accessed January 24, 2019. 2. Mosqueira M, et al. *Med Res Rev*. 2013;33:1174-1213.

DMD Disease Progression

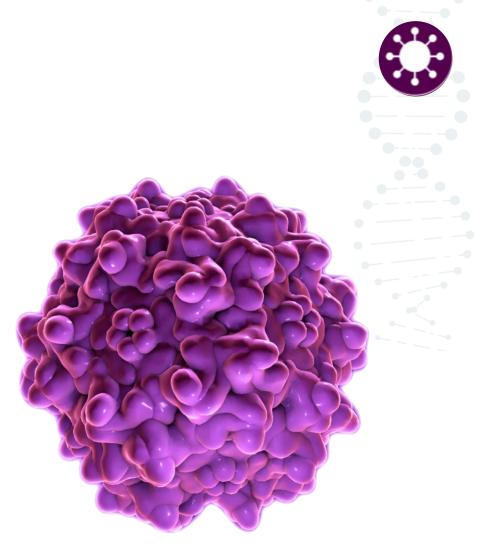
Predictable Progression Loss of Function, Resulting in Premature Death


DIFFICULTY IN GROSS MOTOR SKILLS & AMBULATION^{1,2}

1. Bushby K, Connor E. Clin Investig (Lond). 2011;1(9):1217-1235. 2. Cruz Guzman OR, et al. Int J Endocrinol.2012;485376.

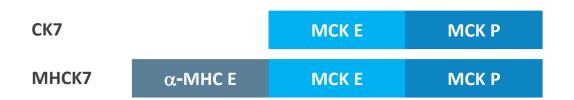
©2019 SAREPTA THERAPEUTICS

THERAPEUTICS



Gene Therapy for DMD: Background & Rationale for Development

AAVrh74


- Originally isolated from NHP
- Most similar to AAV8 with regard to capsid sequence (93% identical)
- Robust affinity for muscle cells in animal models, making it an ideal choice for delivering the micro-dystrophin transgene
- Relatively low level of pre-existing immunity potentially allows more patients to be treated

Promoter: Rationale for Selecting MHCK7 Effect of Addition of α -MHC Enhancer on Cardiac Activity

Regulatory cassettes based on MCK and α -MHC regulatory elements

MCK

• Regulatory regions of the murine **muscle creatine kinase** (MCK) gene direct tissue-specific expression in both skeletal and cardiac muscle

$\alpha\text{-MHC}$

- α-myosin heavy-chain (α-MHC) enhancer confers high-level cardiac muscle-specific activity
- Addition of the α-MHC enhancer boosted cardiac muscle expression beyond that observed with previous MCK-based cassettes

Transgene: Development Approach Replace & Compensate for the Defective Gene

AAV Vector

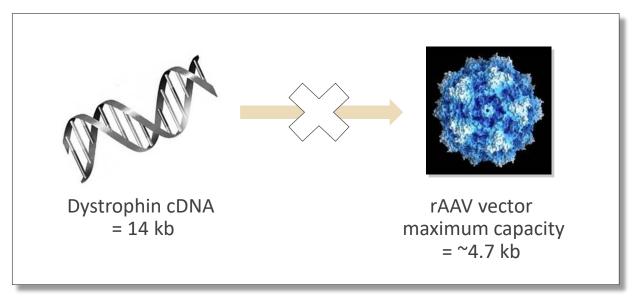
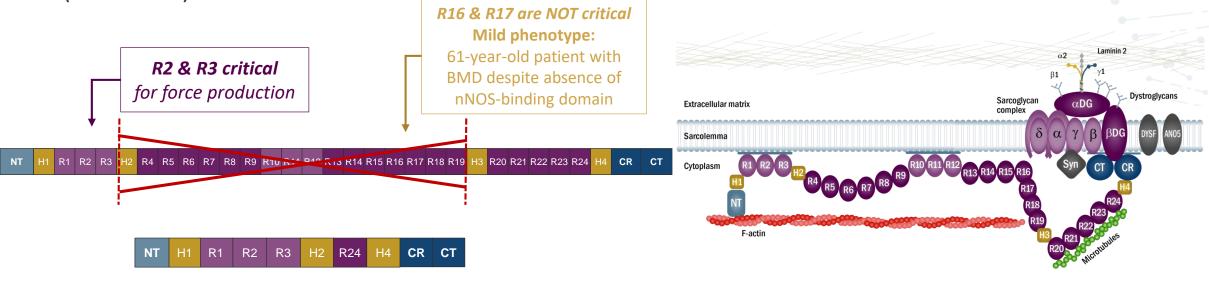
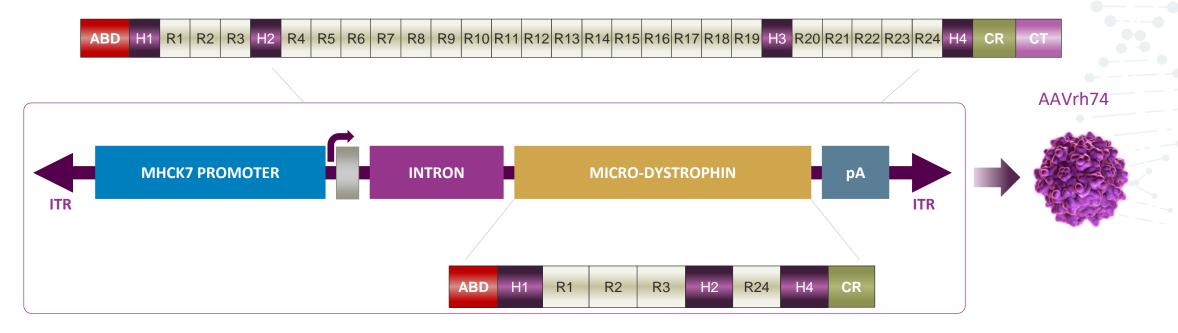


Image courtesy of Serge Braun.


Full-length dystrophin is too big for AAV vectors

cDNA, complementary deoxyribonucleic acid; kb, kilobase; rAAV, recombinant AAV. McClements ME, MacLaren RE. *Yale J Biol Med.* 2017;90(4):611-623.

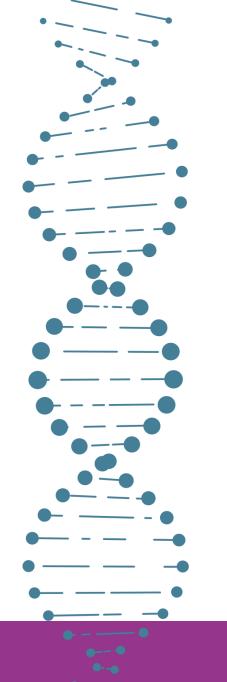
Transgene: Biological Basis for Use of Shortened Dystrophin


- Clinical observations paved the way for mini-gene therapy development
- 61-year-old ambulatory patient with BMD had 46% of dystrophin coding region deleted (Del 17-48)¹

"Mini"-dystrophin²

Micro-dystrophin Gene Therapy Construct: Development in DMD¹⁻⁷

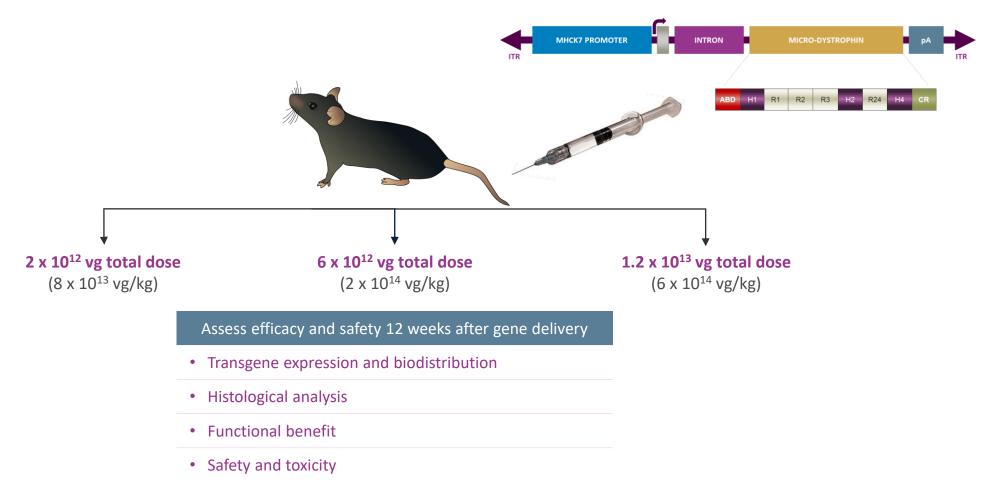
AAVrh74 Viral Vector	MHCK7 Promoter	Micro-dystrophin Transgene	
Robust affinity for muscle	Specific to skeletal and cardiac muscle	Protein functionality	
Relatively low level of pre-existing immunity	Drives expression in cardiac muscle	Contains spectrin-like repeats 2 and 3	


ITR, inverted tandem repeat.

AAVrh74.MHCK7.Micro-dystrophin is investigational and not approved.

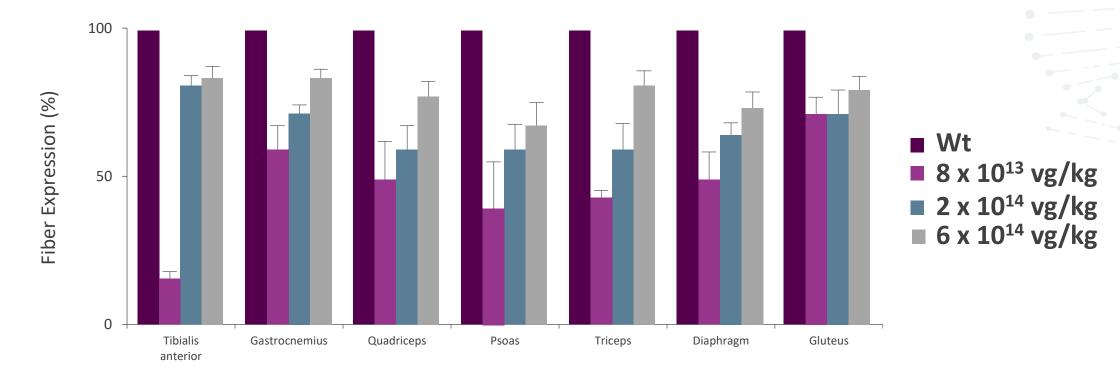
1. Salva MZ, et al. Mol Ther. 2007;15(2):320-329. 2. Mendell JR, et al. Neurosci Lett. 2012;527(2):90-99. 3. Rodino-Klapac LR, et al. Hum Mol Genet. 2013;22(24):4929-4937.

4. Velazquez VM, et al. *Mol Ther Methods Clin Dev*. 2017;4:159-168. 5. Harper SQ, et al. *Nat Med*. 2002;8(3):253-261. 6. Nelson DM, et al. *Hum Mol Genet*. 2018;27(12):2090-2100. 7. Sarepta Therapeutics Data on File.



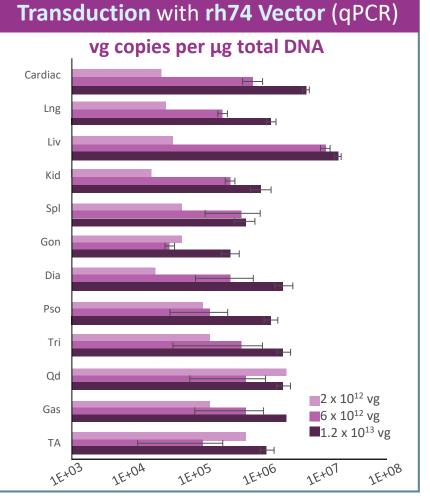
Gene Therapy Development for DMD: Pre-clinical Data

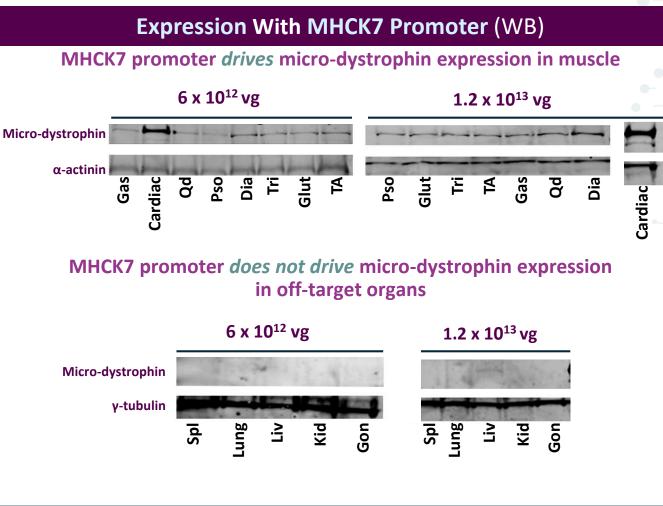
Nonclinical IV Study Design for the Delivery of AAVrh74.MHCK7.Micro-dystrophin in *mdx* mice



IV, intravenous; vg, viral genomes.

Presented at the 23rd Annual Meeting of the World Muscle Society. Precision Genetic Medicine for Neuromuscular Diseases (Sarepta Therapeutics). 3 October 2018. Mendoza, Argentina.

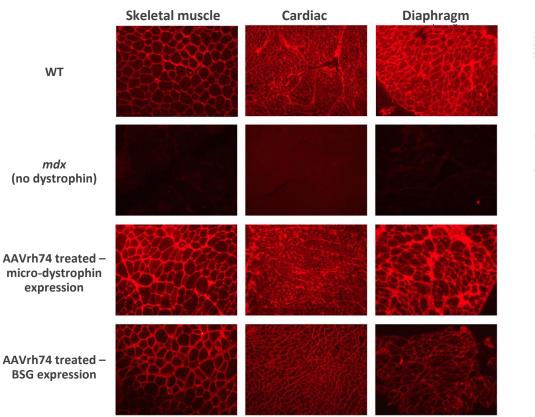

AAVrh74.MHCK7.Micro-dystrophin Widespread Expression After Gene Delivery in *mdx* Mice



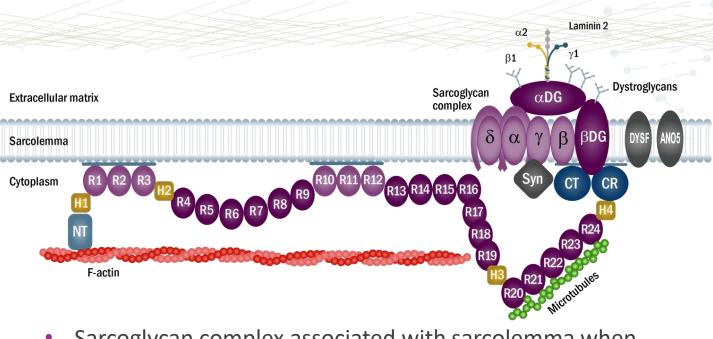
DYSTROPHIN-POSITIVE FIBERS (%)

Sarepta Therapeutics 2019. Data on File. AAVrh74.MHCK7.Micro-dystrophin is investigational and not approved.

Widespread Transduction of DNA and Selective Expression of Micro-dystrophin Protein in the *mdx* Mouse Model



Dia, diaphragm; Gas, gastrocnemius; Gon, gonadal; Hrt, heart; Kid, kidney; Liv, liver; Lng, lung; Pso, Psoas; Qd, quadriceps; Spl, spleen; Tri, triceps; WB, Western blot. Presented at the 23rd Annual Meeting of the World Muscle Society. Precision Genetic Medicines for Neuromuscular Diseases (Sarepta Therapeutics). 3 October 2018. Mendoza, Argentina.



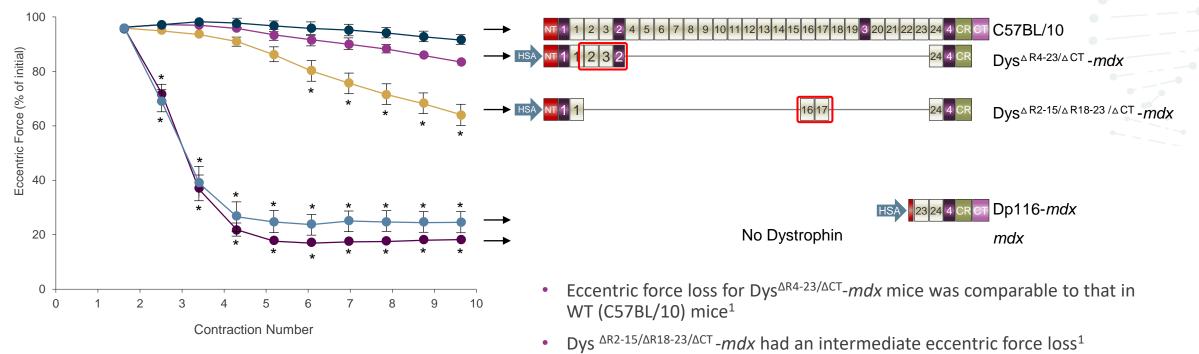
Reassembly of the Dystrophin-associated Protein Complex With Micro-dystrophin in *mdx* Mice

BSG, β -sarcoglycan. Data in *mdx* mice.

Dystrophin and BSG Expression (IHC)

Schematic of the DAPC

• Sarcoglycan complex associated with sarcolemma when micro-dystrophin is expressed in *mdx* mice


Image adapted from Fairclough RJ, et al. Nat Rev Genet. 2013;14(6):373-378.

Presented at the 23rd Annual Meeting of the World Muscle Society. Precision Genetic Medicines for Neuromuscular Diseases (Sarepta Therapeutics). 3 October 2018. Mendoza, Argentina.

R2-3 Region of Dystrophin Impacts Susceptibility to Eccentric Contraction-induced Force Drop in *mdx* Mice¹

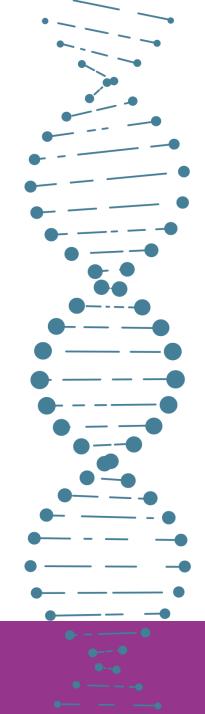
R2-3 of Dystrophin Required for Maximal Resistance to Eccentric Force Loss

- Data support a role for the dystrophin **R2-3 membrane-binding domain**
- Data support a role for the dystrophin **R2-3 membrane-binding domain** in modulating radial force transmission and mechanical vulnerability¹⁻³

HSA, human skeletal actin; WT, wild-type.

*P<0.001 vs C57BL/10.

1. Nelson DM, et al. *Hum Mol Genet*. 2018;27(12):2090-2100. 2. Legardinier S, et al. *Biochim Biophys Acta*. 2008;1784(4):672-682. 3. Zhao J, et al. *Hum Mol Genet*. 2016;25(17):3647-3653.


Nonclinical Summary

AAVrh74.MHCK7.Micro-dystrophin¹

ABD	1 R1 R2 R3	H2 R24 H4 CR
Design Consideration	Driven By	Output
Tissue Targeting (Skeletal + Cardiac)	AAVrh74	Transduction of All Muscles + Cardiac ²
Low Immunogenicity	AAVrh74	Low Pre-existing Antibodies ³
Selective Gene Expression (Skeletal + Cardiac)	MHCK7 Promoter	High Expression by WB in Skeletal + Cardiac Muscles ^{4,5} No Off-target Expression ^{4,5}
Correct Localization (Micro-dystrophin + DAPC Proteins)	Transgene	Restoration of DAPC by IHC ⁵
Function	Transgene	Specific Force ⁵ Eccentric Force Drop ⁶

1. Duan D. *Mol Ther*. 2018;26(10):1-20. 2. Chicoine LG, et al. *Mol Ther*. 2014;22(4):713-724. 3. Zygmunt DA, et al. *Hum Gene Ther*. 2017;28(9):737-746. 4. Salva MZ, et al. *Mol Ther*. 2007;15(2):320-329. 5. Presented at the 23rd Annual Meeting of the World Muscle Society. Precision Genetic Medicines for Neuromuscular Diseases (Sarepta Therapeutics). 3 October 2018. Mendoza, Argentina. 6. Nelson DM, et al. *Hum Mol Genet*. 2018;27(12):2090-2100.

Gene Therapy for DMD: Clinical Data

AAVrh74.MHCK7.Micro-dystrophin: Goal of Study 1 Was to Validate Pre-clinical Results

AAVrh74.MHCK7.Micro-dystrophin¹

ABD H1	R1	R2	R3	H2	R24	H4	CR
--------	----	----	----	----	-----	----	----

Characteristic	Driven By	Expectations based on pre-clinical models		
Transduction	AAVrh74	AAVrh74 efficient transduction to all muscle types ²		
Expression	MHCK7 Promoter	MHCK7 selective for cardiac and skeletal transgene muscle expression ^{3,4} Widespread micro-dystrophin expression in all biopsied muscles ^{3,4}		
Efficacy	Efficacy Transgene Reduction in CK ⁵ Functional Outcomes ⁵			
Safety	Vector + Transgene	Favorable safety profile with no unexpected immunological responses ⁶		

1. Duan D. *Mol Ther*. 2018;26(10):1-20. 2. Chicoine LG, et al. *Mol Ther*. 2014;22(4):713-724. 3 Salva MZ, et al.*Mol Ther*. 2007;15(2):320-329. 4. Presented at the 23rd Annual Meeting of the World Muscle Society. Precision Genetic Medicines for Neuromuscular Diseases (Sarepta Therapeutics). 3 October 2018. Mendoza, Argentina. 5. Nelson DM, et al. *Hum Mol Genet*. 2018;27(12):2090-2100. 6. Zygmunt DA, et al. *Hum Gene Ther*. 2017;28(9):737-746.

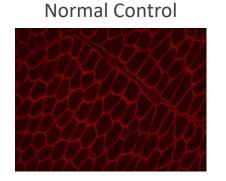
Study 1: Open-label Trial Design

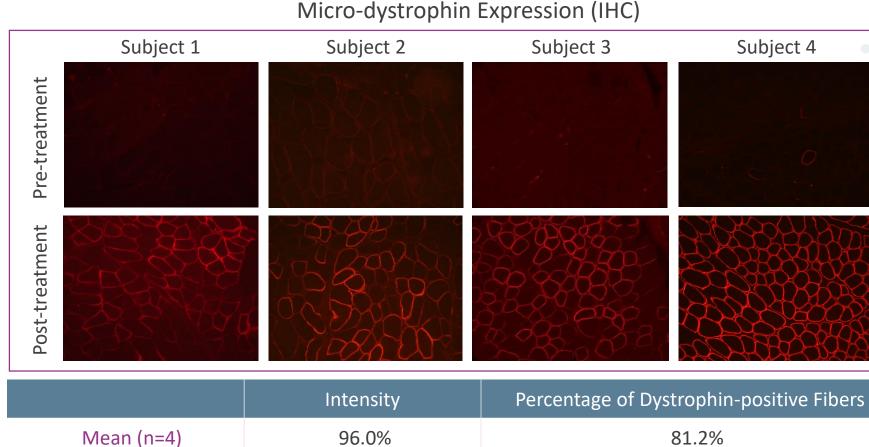
- 4 subjects with DMD open-label trial
 - 4-7 years of age
 - Confirmed DMD mutation within exons 18 to 58
 - Negative for AAVrh74 antibodies
- Stable steroid dosing for at least 3 months (range: 6 months to 2 years)
- Subjects were put on prednisone 1 mg/kg daily dosing starting 1 day before treatment for ≥30 days

Study 1: Endpoints

Primary endpoint

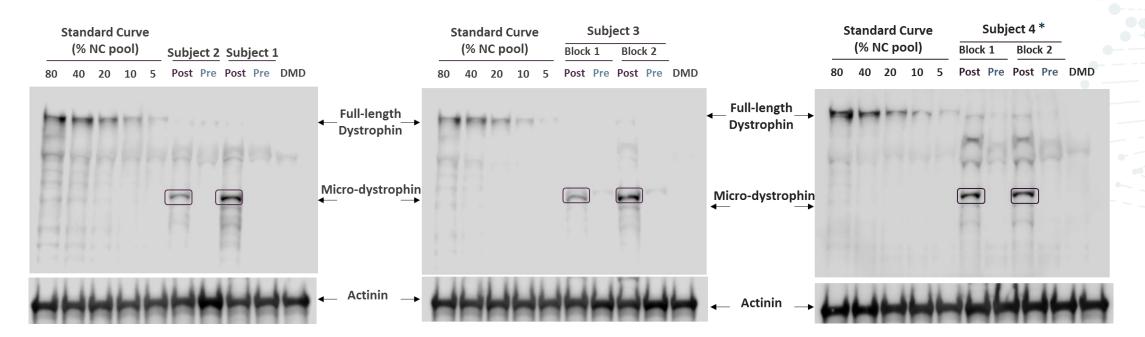
• Safety


Key Secondary endpoints


- Change in micro-dystrophin expression pre- vs post-treatment
- Decrease in CK
- 100-meter timed test (100 m)
- North Star Ambulatory Assessment (NSAA; 10-meter timed test included)
- Ascend 4 steps
- Cardiac magnetic resonance imaging (at 1 year)

ClinicalTrials.gov Identifier: NCT03375164. Presented at the 23rd Annual Meeting of the World Muscle Society. Precision Genetic Medicines for Neuromuscular Diseases (Sarepta Therapeutics). 3 October 2018. Mendoza, Argentina.

Micro-dystrophin Expression in Muscle Fibers From the Gastrocnemius in All 4 Subjects at Day 90



ClinicalTrials.gov Identifier: NCT03375164.

Presented at the 23rd Annual Meeting of the World Muscle Society. Precision Genetic Medicines for Neuromuscular Diseases (Sarepta Therapeutics). 3 October 2018. Mendoza, Argentina.

Detection of Micro-dystrophin Protein by Western Blot Posttreatment in All 4 Subjects at Day 90

Western Quantitation Method	Mean Micro-dystrophin Expression (N=4) vs Normal				
Sarepta	74.3%	(not adjusted for fat and fibrotic tissue)			
Nationwide Children's	95.8%	(adjusted for fat and fibrotic tissue)			

NC, normal control; ULOQ, upper limit of quantitation.

*Samples diluted 1:4 because ULOQ (>80%) was exceeded in initial analysis. Mean values were multiplied by correction factor for final value compared with NC.

ClinicalTrials.gov Identifier: NCT03375164.

Presented at the 23rd Annual Meeting of the World Muscle Society. Precision Genetic Medicines for Neuromuscular Diseases (Sarepta Therapeutics). 3 October 2018. Mendoza, Argentina.

Micro-dystrophin Expression Is Supported by a Vector Genome Count in All 4 Subjects

Micro-dystrophin Expression (IHC)

Intensity	Percentage of Dystrophin-positive Fibers		
96.0%	81.2%		
ression (Western Blot)			
Sarepta (not adjusted for fat/fibrosis)	Nationwide Children's (adjusted for fat/fibrosis)		
74.3%	95.8%		
ber			
	96.0% ression (Western Blot) Sarepta (not adjusted for fat/fibrosis) 74.3%		

	Vector Copies/µg DNA	Copies per Nucleus
Mean (n=4)	>10 ⁵	3.3

ClinicalTrials.gov Identifier: NCT03375164.

Presented at the 23rd Annual Meeting of the World Muscle Society. Precision Genetic Medicines for Neuromuscular Diseases (Sarepta Therapeutics). 3 October 2018. Mendoza, Argentina.

Summary of NSAA Data for All 4 Patients

NSAA Change from Baseline to Day 270

Patient	Baseline	Day 30	Day 60	Day 90	Day 180	Day 270	Change from Baseline
1	18	22	24	23	25	26	+8
2	19	21	23	25	27	27	+8
3	26	28	28	30	30	28	+2
4	19	20	20	25	25	27	+8
Mean	20.5	22.75	23.75	25.75	26.75	27	+6.5

ClinicalTrials.gov Identifier: NCT03375164.

Presented at Myology 2019 (Sarepta Therapeutics). 25-28 March 2019. Bordeaux, France. AAVrh74.MHCK7.Micro-dystrophin is investigational and not approved.

Summary of Clinical Data at 9 Months

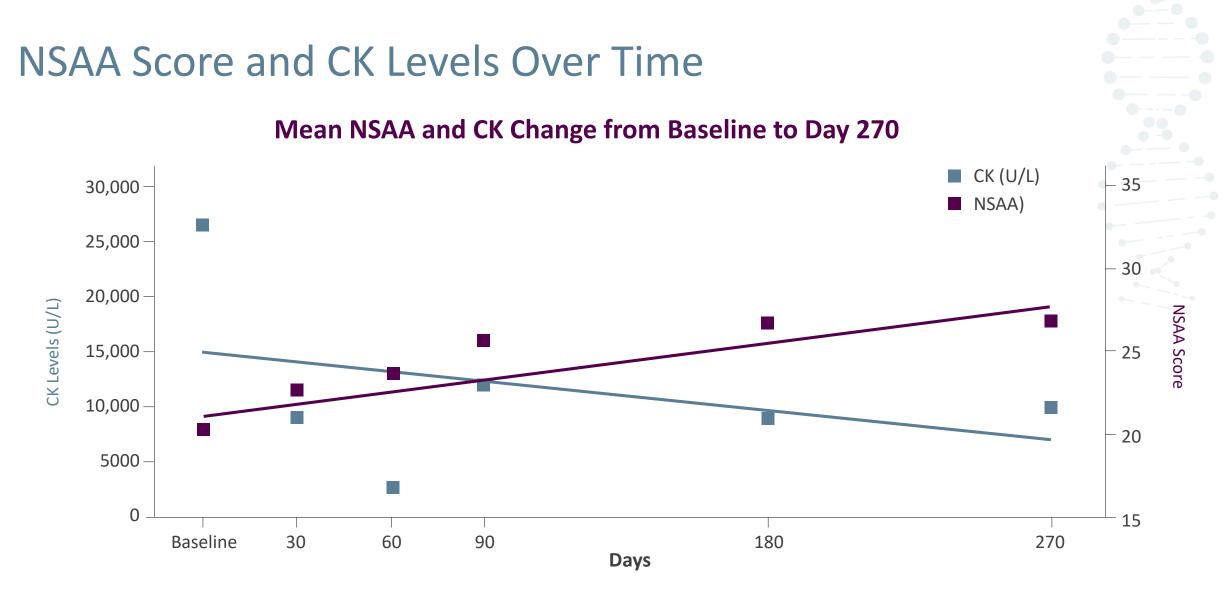
Change from Baseline to Day 270

Subject	Age	Assessment	NSAA (Δ)		
1	5	Baseline	18		
T	5	Day 270	26		
2	Л	Baseline	19		
Z	4	4	4	Day 270	27
3	6	Baseline	26		
5		Day 270	28		
	Л	Baseline	19		
4	4	Day 270	27		
Average	banga fra	6.5-point			
Average	Change fro	Improvement			

ClinicalTrials.gov Identifier: NCT03375164.

Presented at Myology 2019 (Sarepta Therapeutics). 25-28 March 2019. Bordeaux, France. AAVrh74.MHCK7. Micro-dystrophin is investigational and not approved.

Summary of Clinical Data at 9 Months


Change from Baseline to Day 270

Subject	Age	Assessment	NSAA (Δ)	Time to Rise (sec)	4 Stairs Up (sec)	100 m (sec)
1	5	Baseline	18	3.7	3.4	49.3
T	5	Day 270	26	3.0	2.3	43.2
2	Л	Baseline	19	3.0	3.8	49.9
Z	4	Day 270	27	3.3	2.7	50.3
3	6	Baseline	26	3.9	1.9	59.3
5		Day 270	28	2.8	1.9	50.7
Л	Л	Baseline	19	4.1	4.8	67.2
4	4	Day 270	27	2.4	2.2	49.7
Average	Average Change from Baseline		6.5-point	0.8 s	1.2 s	7.95 s
Average	Linalige fro	iii Daseiiile	Improvement	Improvement	Improvement	Improvement

ClinicalTrials.gov Identifier: NCT03375164.

Presented at Myology 2019 (Sarepta Therapeutics). 25-28 March 2019. Bordeaux, France. AAVrh74.MHCK7. Micro-dystrophin is investigational and not approved.

ClinicalTrials.gov Identifier: NCT03375164.

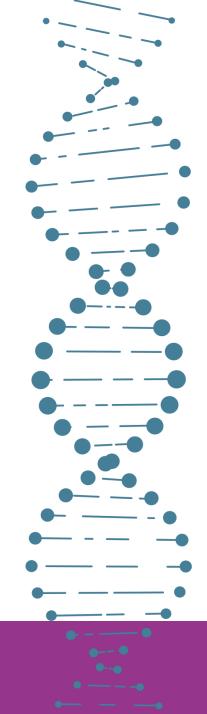
Sarepta Therapeutics 2019. Data on File. AAVrh74.MHCK7.Micro-dystrophin is investigational and not approved in any country.

Safety Experience (n=4)

- No serious adverse events in this study
- 3 subjects had elevated γ-glutamyl transpeptidase, which resolved with steroid treatment within a week
- No other clinically significant laboratory findings
- Subjects had transient nausea generally within the first week coincident with increased steroid dosing
 - Did not correlate with liver enzyme elevations or any other abnormality

Sarepta Therapeutics Data on File. AAVrh74.MHCK7.Micro-dystrophin is investigational and not approved in any country.

AAVrh74.MHCK7.Micro-dystrophin Study 1 Summary (N=4)


AAVrh74.MHCK7.Micro-dystrophin¹

ABD	H1	R1	R2	R3	H2	R24	H4	CR
-----	----	----	----	----	----	-----	----	----

Characteristic	Driven by	Findings to Date
Transduction	AAVrh74	AAVrh74 efficient transduction to gastrocnemius ²
Expression	MHCK7 Promoter	Micro-dystrophin expression post-gene transfer in biopsied muscle ^{3,4}
Efficacy	Transgene	Reduction in CK ⁵ Improved functional outcomes ⁵
Safety	Vector + Transgene	No unexpected immunological responses in these patients ⁶

1. Duan D. *Mol Ther*. 2018;26(10):1-20. 2. Chicoine LG, et al. *Mol Ther*. 2014;22(4):713-724. 3. Salva MZ, et al. *Mol Ther*. 2007;15(2):320-329. 4. Presented at the 23rd Annual Meeting of the World Muscle Society. Precision Genetic Medicines for Neuromuscular Diseases (Sarepta Therapeutics). 3 October 2018. Mendoza, Argentina. 5. Nelson DM, et al. *Hum Mol Genet*. 2018;27(12):2090-2100. 6. Zygmunt DA, et al. *Hum Gene Ther*. 2017;28(9):737-746.

The Limb-Girdle Muscular Dystrophies (LGMDs)

LGMD

- The term "LGMD" was first coined in 1954 by John Walton and FJ Nattrass to describe a class of muscular dystrophies that were distinct from other dystrophies such as DMD and myotonic dystrophy type 1¹
- LGMD onset can vary from early childhood to adulthood and manifests with progressive weakness in the hip and shoulder girdle musculature¹
- LGMD has been **observed in both males and females** (not X-linked)²
- Approximate global prevalence of LGMDs as a group is 1.63 per 100,000 (Prevalence estimates range from 0.56 to 6.90 per 100,000)³

DMD, Duchenne muscular dystrophy.

1. Liewluck T, Milone M. *Muscle Nerve*. 2018;58(2):167-177. 2. Pegoraro E, Hoffman EP. Limb-Girdle Muscular Dystrophy Overview. June 8, 2000 [Updated August 30, 2012]. www.ncbi.nlm.nih.gov/books/NBK1408/. Accessed December 16, 2018. 3. Mah JK, et al. *Can J Neurol Sci*. 2016;43(1):163-177.

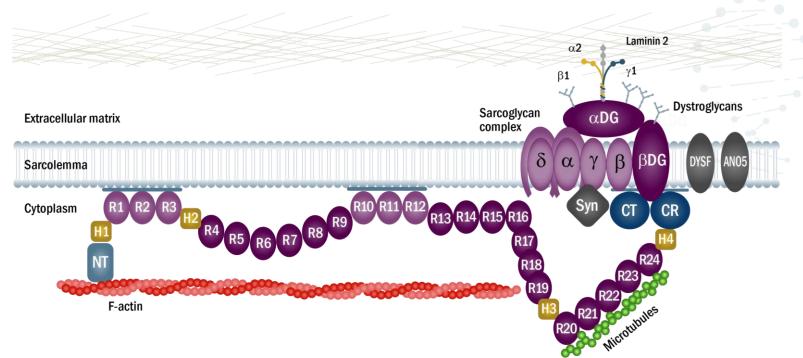
LGMD

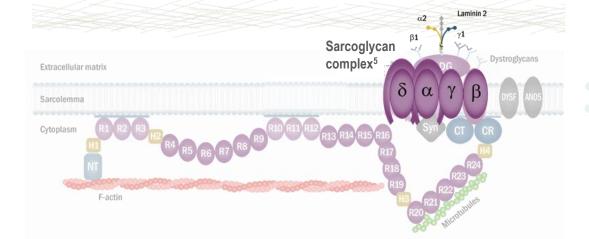
- In total, 34 variants of LGMD have been identified¹
- There is wide variation in the prevalence of LGMD subtypes, suggesting potential founder mutations²
- Each subtype represents a unique mutation and a compilation of symptoms²
- There is **significant heterogeneity** between the varying subtypes²

The Dystrophin-Associated Protein Complex (DAPC)

- The relationship between dystrophin and the DAPC is both intricate and dependent¹
- The dystrophin complex stabilizes the plasma membrane (sarcolemma) of striated & cardiac muscle cells¹
- Loss-of-function mutations

 in the genes encoding dystrophin, or
 other proteins in the DAPC, results in
 destabilization of the plasma
 membrane and loss of myofibers
 and cardiomyocytes²

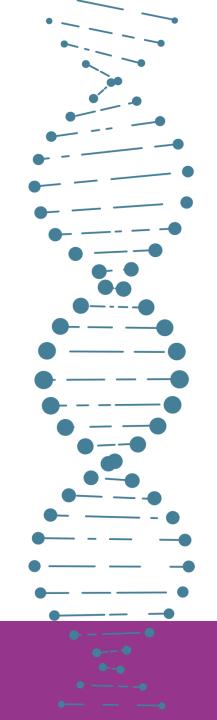



Image adapted from Fairclough RJ, et al. Nat Rev Genet. 2013;14(6):373-378.

1. Bhat HF, et al. J Cell Physiol. 2018;233(7):5142-5159. 2. Gao Q, McNally EM. Compr Physiol. 2015;5(3):1223-1239.

The Sarcoglycan Complex: Essential Proteins of the DAPC

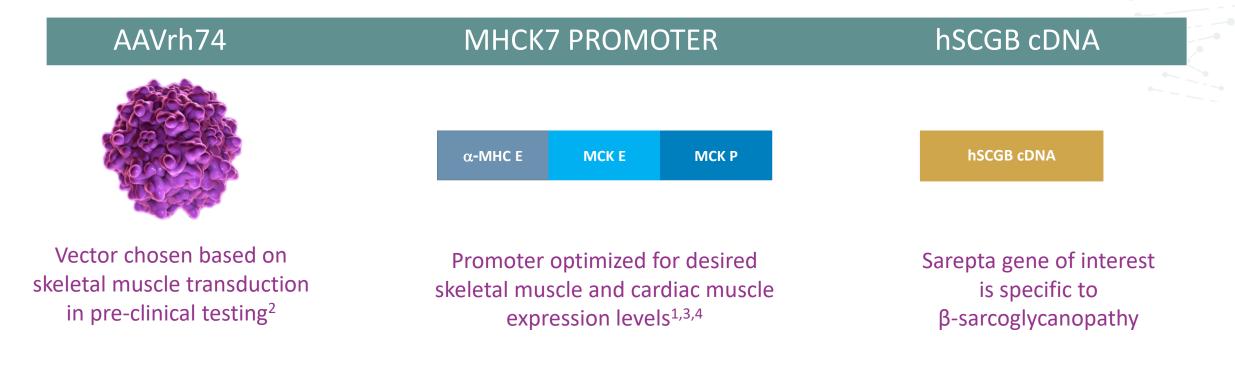
- LGMD is caused by a broad range of mutations occurring in multiple genes that encode for proteins that play vital roles in muscle function, regulation and repair¹
- Sarepta/NCH focus:
 - Sarcoglycans prevent muscle damage during contraction²
 - All 4 functional sarcoglycans must be present to form a functional sarcoglycan complex³


Gene/Protein ⁴	Function ²	Disease ⁴	Clinical Program
SGCA α-sarcoglycan	Stabilizes DAPC, prevents muscle damage during contraction	LGMD2D	MYO-102
SGCB β-sarcoglycan		LGMD2E	MYO-101
SGCG γ-sarcoglycan		LGMD2C	MYO-103
SGCD δ-sarcoglycan		LGMD2F	_

-sarcoglycan and δ -sarcoglycan act as ne structural core of the sarcoglycan omplex²

NCH, Nationwide Children's Hospital.

1. Mah JK, et al. *Can J Neurol Sci.* 2016;43(1):163-177. 2. McNally EM. The Sarcoglycans. Landes Bioscience 2000-2013. www.ncbi.nlm.nih.gov/books/NBK6317/. Accessed March 21, 2019. 3. Allen DG, et al. *Physiol Rev.* 2016;96(1):253-305. 4. Liewluck T, Milone M. *Muscle Nerve.* 2018;58(2):167-177. 5. Image adapted from Fairclough RJ, et al. *Nat Rev Genet.* 2013;14(6):373-378.

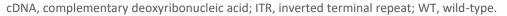


Overview of Sarepta's Gene Therapy Development for LGMD2E (β-sarcoglycanopathy)

AAVrh74 Vector Design

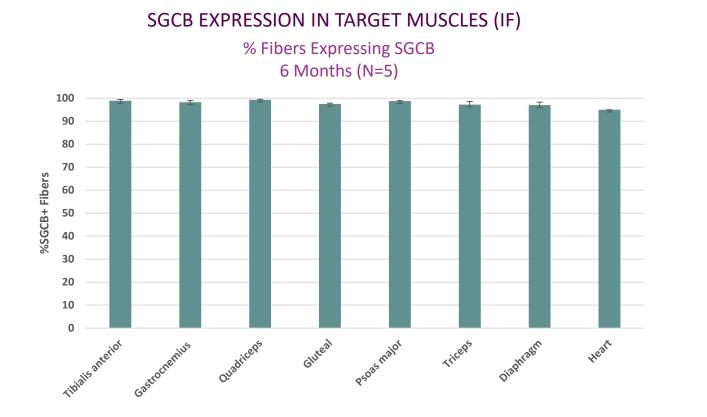
Full-length Transgene: β-sarcoglycan

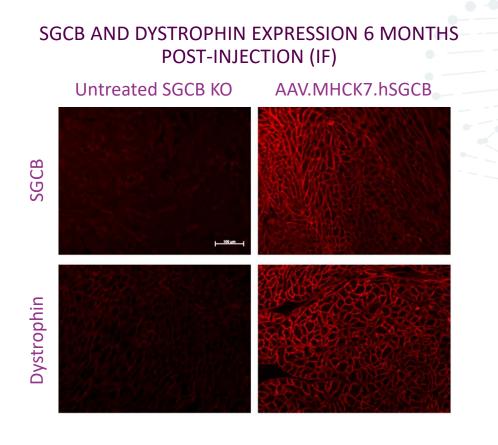
• AAV expression cassette carrying the human β-sarcoglycan (hSCGB) cDNA


1. Pozsgai ER, et al. Mol Ther. 2017;25(4):855-869. 2. Chicoine LG, et al. *Mol Ther*. 2014;22(2):338-347. 3. Salva MZ, et al. *Mol Ther*. 2007;15(2):320-329. 4. Wang B, et al. *Gene Ther*. 2008;15(22):1489-1499.

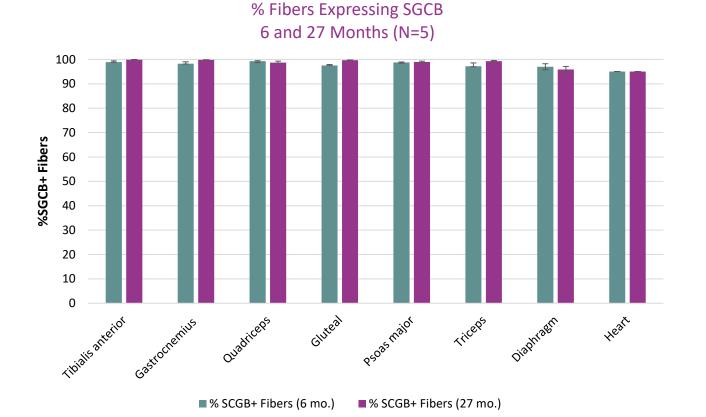
AAVrh74.MHCK7.SCGB Development Program Synopsis (LGMD2E)

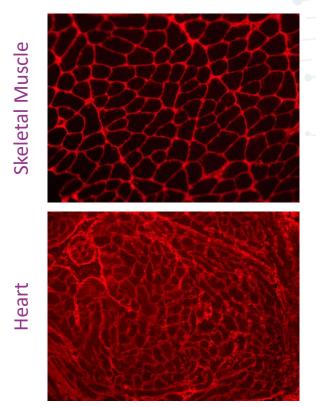
- Systemic delivery of the construct by self-complementary AAV vector reconstitutes full-length SGCB in systemic mice studies¹
 - ~98% of muscle fibers expressed SGCB ____
 - Diaphragm muscle function restored to 94.4% of WT
 - Overall ambulation increased by 57%
 - No safety issues were observed in pre-clinical safety studies —
- Systemic Phase 1/2a IV trial has been initiated²
 - 60-day biopsy data now available
- US Orphan Drug Designation application was granted in February 2018³
- Rare Pediatric Disease Designation was granted in May 2018³


1. Pozsgai ER, et al. Mol Ther. 2017;25(4):855-869. 2. ClinicalTrials.gov Identifier: NCT03652259. 3. Myonexus website. Press Release May 2018.


https://myonexustx.com/2018/05/16/myonexus-therapeutics-receives-fda-rare-pediatric-drug-designation-pioneering-treatment-limb-girdle-muscular-dystrophy-type-2e/. Accessed March 30, 2019.

Transduction and Localization of AAVrh74.MHCK7.hSGCB Led to Restoration of DAPC Proteins in *LGMD2E-/-* Mice SGCB AND DYSTROPHIN EXPRESSION 6 MONTHS AFTER IV TREATMENT (1x10¹² VG TOTAL DOSE)

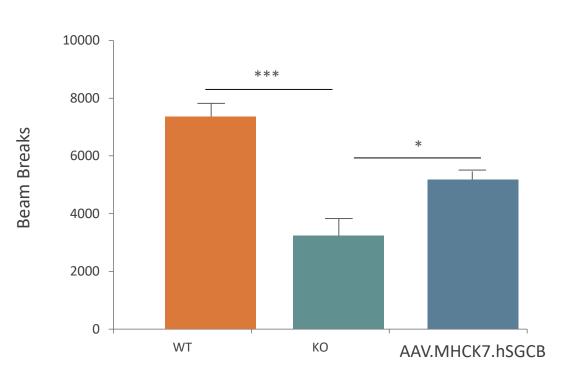



IF, immunofluorescence; SGCB, β -sarcoglycan; KO, knockout; vg, vector genome. Pozsgai ER, et al. *Mol Ther*. 2017;25(4):855-869.

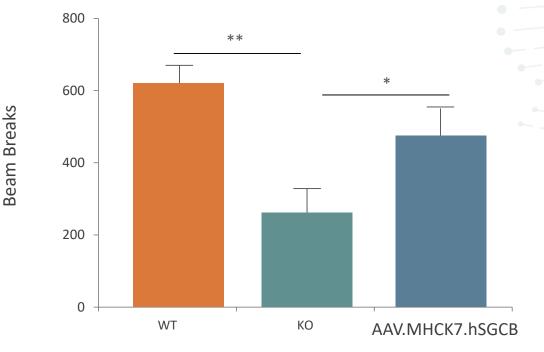
Durability: Sustained Expression for Mouse Lifespan SGCB AND DYSTROPHIN EXPRESSION 27 MONTHS AFTER IV TREATMENT (1x10¹² VG TOTAL DOSE)

SGCB EXPRESSION IN TARGET MUSCLES (IF)

hSGCB EXPRESSION 27 MONTHS POST-INJECTION (IF)



Sarepta Therapeutics 2019. Data on file.

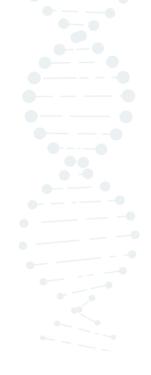

Systemic Gene Therapy Improved Activity and Movement 6 Months Post-Injection

Overall Ambulation and Hindlimb Vertical Activity Increased Upon Systemic Delivery to LGMD2E Mice

VERTICAL ACTIVITY

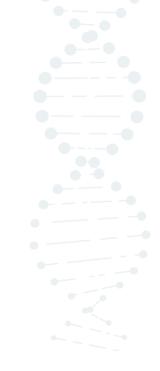
P*< 0.05; *P*< 0.01; ****P*< 0.0001. Pozsgai ER, et al. *Mol Ther.* 2017;25(4):855-869.

Clinical Results: LGMD2E (β-sarcoglycanopathy)

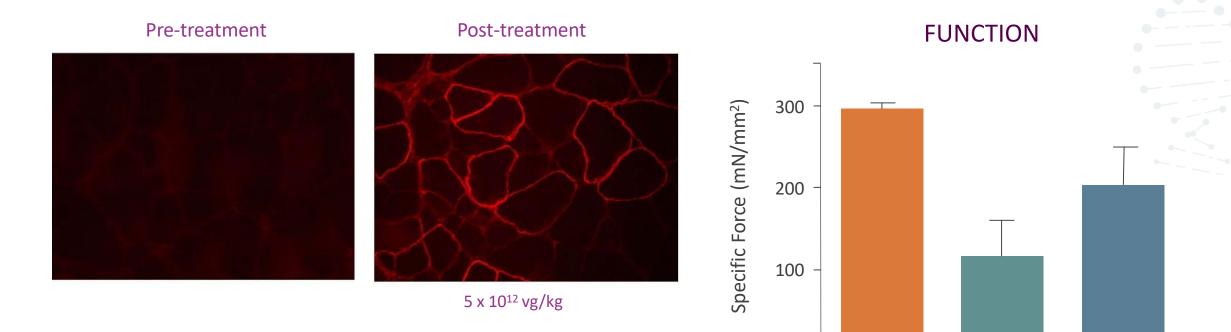

	•	sarcoglycan -clinical Results
		AAVrh74.MHCK7.SGCB
ITR	MHCK7 PROMOTER	INTRON SGCB cDNA PA
Characteristic	Driven By	Expectations based on pre-clinical models
Transduction	AAVrh74	AAVrh74 efficient transduction to all muscle types ¹
Expression	MHCK7 Promoter	MHCK7 selective for cardiac and skeletal transgene muscle expression ^{2,3} Widespread SGCB expression in all muscles ³
Efficacy	Transgene	Reduction in CK ³ Improved functional outcomes ³
Safety	Vector and Transgene	Favorable safety profile ³

1. Chicoine LG, et al. Mol Ther. 2014;22(2):338-347. 2. Salva MZ, et al. Mol Ther. 2007;15(2):320-329. 3. Pozsgai ER, et al. Mol Ther. 2017;25(4):855-869.

LGMD2E Open-Label Trial Design


- Up to 9 subjects with LGMD
 - Cohort 1: 3 subjects
 - 4-15 years of age
 - 5 x 10¹³ vg/kg AAVrh74.MHCK7.SGCB*
- Inclusion criteria
 - A confirmed SGCB mutation in both alleles
 - Negative for AAVrh74 antibodies
 - >40% of normal 100-meter walk test
- 60-day muscle biopsy
- Prednisone 1 day prior to gene transfer, 30 days 1 mg/kg, taper

S A R E P T A


Endpoints in the LGMD2E Study

- Primary endpoints
 - Expression: ≥20% SGCB-positive fibers
 - Safety
- Secondary endpoints include:
 - Change in CK
 - Functional endpoints

Pre-clinical Models Correlated Expression With Function ≥20% SGCB EXPRESSION LEADS TO INCREASED FUNCTION IN LGMD2E MICE

AAVrh74.hSGCB

Sarepta Therapeutics 2019. Data on file.

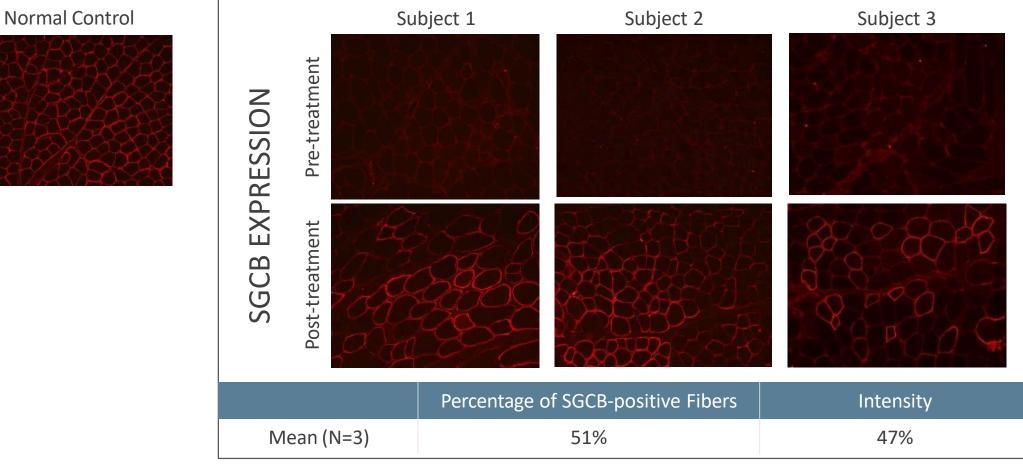
0

WT

BSG KO

LGMD2E Subject Demographics at Baseline¹

Subject	Age (years)	Mutation	Weight (kg)	CK Levels (U/L)
1	13	Exon 3	55	10,727
2	4	Exon 4	17	12,826
3	13	Exon 3	50	10,985


- Exons 3-6 encode for the extracellular domain of SGCB
- Mutations in these exons lead to complete absence of or severely reduced expression of SGCB, and a severe phenotype that includes cardiomyopathy²

ClinicalTrials.gov Identifier: NCT03652259.

1. Sarepta Therapeutics 2019. Data on file. 2. Semplicini C, et al. Neurology. 2015;84(17):1772-1781.

SGCB Expression in Muscle Biopsies in 3 Subjects at a Dose of 5 x 10^{13} vg/kg

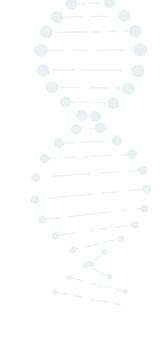
SGCB Expression in Muscle Biopsies in 3 Subjects at a Dose of 5 x 10^{13} vg/kg

Subject	Percentage of SGCB-Positive Fibers	Mean Intensity	
1	63%	47%	
2	49%	57%	
3	42%	38%	
Mean	51%	47%	

SGCB Expression in 3 Subjects as Measured by Western Blot **Post-treatment**

Subject	Mean SGCB Expression vs Normal	_	-	-			_						
1	34.7%	_											
2	39.2%	2000 pg	1000 pg	500 pg	250 pg	125 pg	NC Pool	Pre-Tx	Post-Tx	Pre-Tx	Post-Tx	Pre-Tx	Post-Tx
3	34.5%	Rec hSGCB Std Curve					Subject 1		Subject 2		Subject		
Mean	36.1%		I	Pre-1	Гх Ве	elov	v LO	Q	L	.0Q	= 5	% N	С

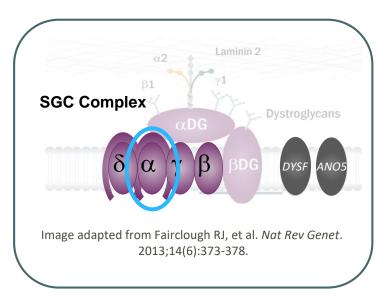
The gene transfer delivers full-length SGCB

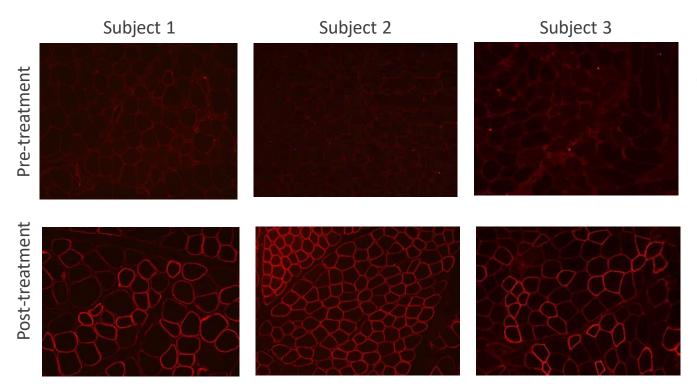


hSGCB (43 kDa)

ClinicalTrials.gov Identifier: NCT03652259. LOQ, Limit of Quantitation


The Optimized Vector and Promoter Provided Expression at a Dose of 5 x 10¹³ vg/kg

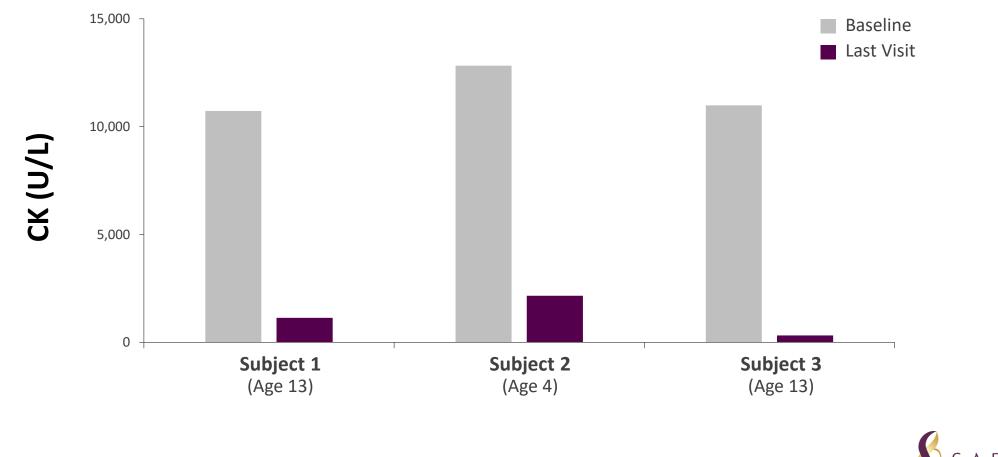

Vector Genome Number Vector Copies/µg DNA Copies per Nucleus Vector Mean (n=3) 8.4 x 10⁴ 0.60 SGCB Expression (IHC) Percentage of Vector/ Promoter **Beta-Sarcoglycan-positive Fibers** Intensity Mean (n=3) 51% 47% SGCB Expression (WB) Promoter/ Percentage of Normal Transgene Mean (n=3) 36.1%



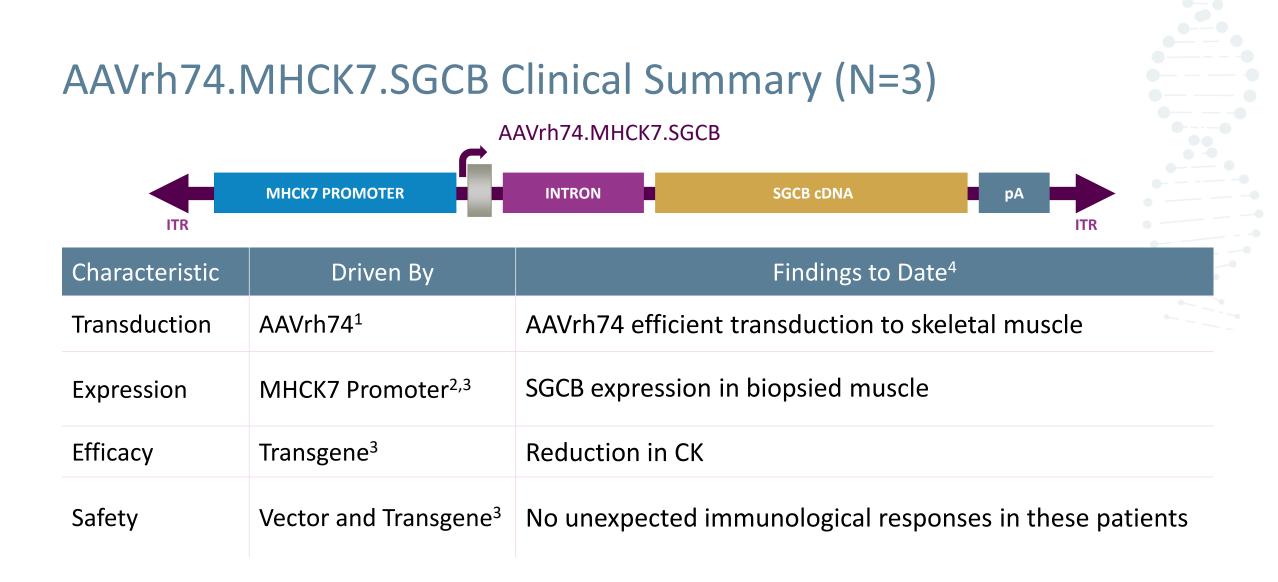
SGCB Expression Significantly Upregulated SGC Complex at a Dose of 5 x 10^{13} vg/kg

 α -SARCOGLYCAN EXPRESSION (IHC)

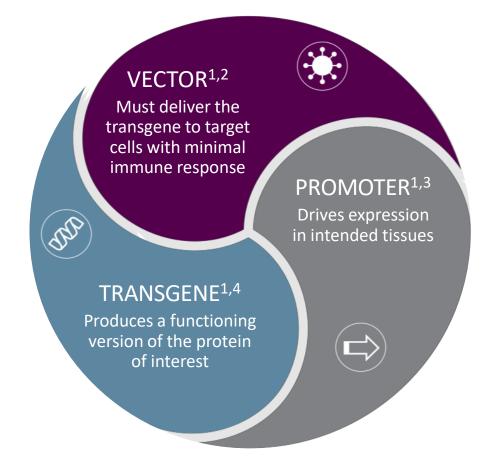
ClinicalTrials.gov Identifier: NCT03652259.


Beta-Sarcoglycan Gene Therapy Restores Sarcoglycan Complex to the Membrane

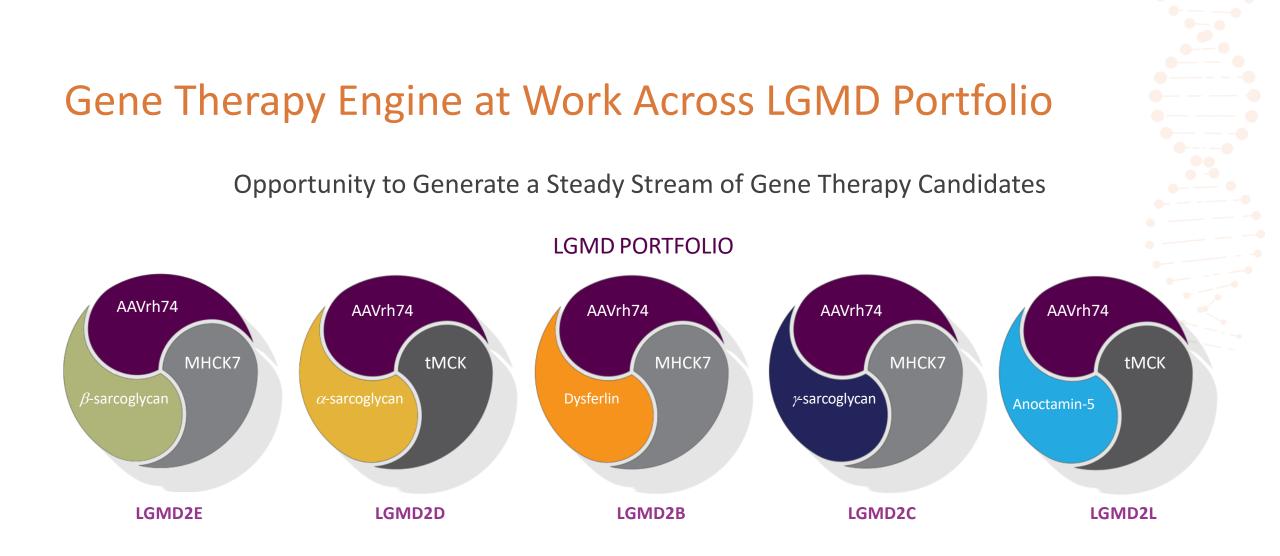
NCT03652259; Data on file from Patient 3, Sarepta Therapeutics Inc: IHC staining of tissue sample for members of the dystrophin-associated protein complex (beta- and alpha-sarcoglycan).


90% Mean Reduction of CK Levels Observed With Systemic SGCB Gene Therapy

CK LEVELS FOLLOWING SYSTEMIC SGCB DELIVERY


Safety Data (N=3)

- 90 days follow-up to date for all subjects
- 2 subjects had elevated liver enzymes, 1 of which was designated an SAE, as the subject had associated transient increase in bilirubin
 - Both events occurred when the subjects were tapered off oral steroids
 - Elevated liver enzymes returned to baseline and symptoms resolved within days following supplemental steroid treatment
- No other clinically significant laboratory findings
- 2 patients had transient mild nausea generally within the first week coincident with increased steroid dosing
 - Did not correlate with liver enzyme elevations or any other abnormality


Sarepta's Gene Therapy Engine at Work 3 Essential Elements in Rationally Designed Therapeutic Development

- Platform approach
- 2 therapeutic areas with clinical data to date
- Transduction, localization & expression shown in both programs

 Naso MF, et al. *BioDrugs*. 2017;31(4):317-334.
 US National Library of Medicine, Lister Hill National Center for Biomedical Communications. Genetics Home Reference. Help me Understand Genetics: *Gene Therapy*. Bethesda, Maryland: 2013. https://ghr.nlm.nih.gov/primer/therapy/genetherapy. Accessed August 29, 2018.
 Zheng C, Baum J. *Methods Mol Biol*. 2008;434:205-219.
 Chamberlain K, et al. *Hum Gene Ther Methods*. 2016;27(1):1-12.

Question and Answer

