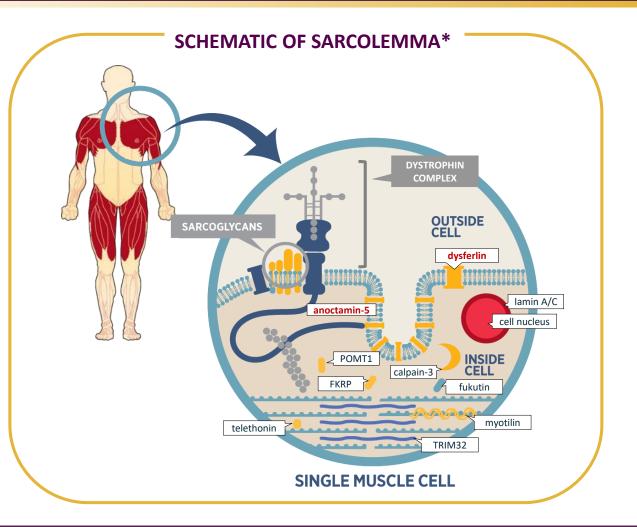
Systemic AAV-Mediated y-sarcoglycan Gene Therapy for Treatment of Muscle Deficits in LGMD2C Mice

<u>Eric R. Pozsgai</u>^{1,3}, Ellyn L. Peterson^{1,3}, Danielle A. Griffin^{1,3}, Jerry R. Mendell^{1,2}, Louise R. Rodino-Klapac^{1,3}

¹Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA; ²Department of Pediatrics and Neurology, The Ohio State University, Columbus, OH, USA, The Ohio State University, Columbus, OH, USA; ³Sarepta Therapeutics, Inc., Cambridge, MA, USA

2019 ASGCT, April 29-May 2, 2019, Washington, D.C.

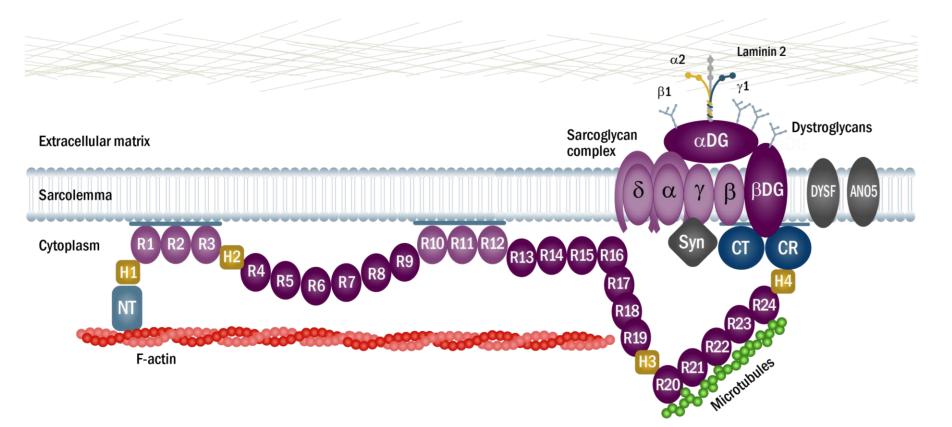
E.R. Pozsgai, E.L. Peterson, D.A. Griffin, and L.R. Rodino-Klapac are employees of Sarepta.


Many LGMDs Are Caused by Defects in the Sarcolemmal Proteins That Comprise the Dystrophin-associated Protein Complex

Sarcoglycans prevent muscle damage during contraction¹

- Mutations in any of the following 4 subunits of the sarcoglycan complex lead to muscular dystrophy¹
 - β-sarcoglycan
 - α-sarcoglycan
 - γ-sarcoglycan
 - δ-sarcoglycan
- Sarcoglycan deficiency leads to dystrophin deficiency¹

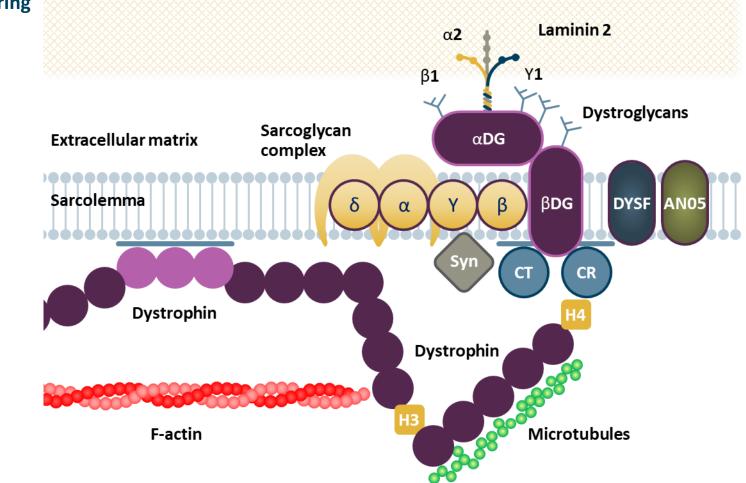
Dysferlin and anoctamin-5 support muscle membrane repair²


 Failed muscle repair leads to chronic muscle degeneration

*Image adapted from the MDA website. Causes/Inheritance. www.mda.org/disease/limb-girdle-muscular-dystrophy/causes-inheritance. Accessed December 12, 2018. 1. McNally EM. The Sarcoglycans. Landes Bioscience 2000-2013. www.ncbi.nlm.nih.gov/books/NBK6317/. Accessed December 16, 2018. 2. Liewluck T, Milone M. *Muscle Nerve*. 2018;58(2):167-177.

The Dystrophin-Associated Protein Complex (DAPC)

- The relationship between dystrophin and the DAPC is both intricate and dependent
- The dystrophin complex stabilizes the plasma membrane of striated & cardiac muscle cells
- Loss of function mutations in the genes encoding dystrophin, or the associated proteins, trigger instability of the plasma membrane and myofiber & cardiomyocyte loss



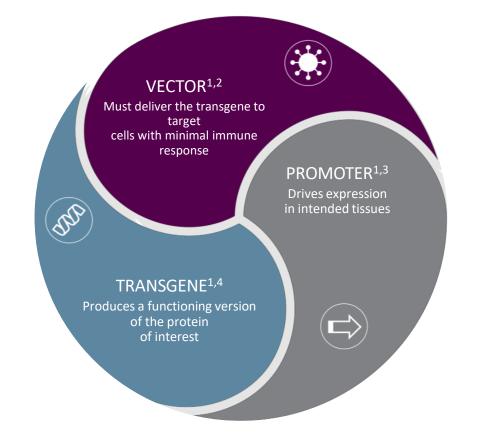
nNOS, neuronal nitric oxide synthase.

The Sarcoglycan Complex: Essential Proteins of the DAPC

- LGMD is caused by a broad range of mutations occurring in multiple genes that encode for proteins that play vital roles in muscle function, regulation and repair¹
- Sarcoglycanopathies
 - Sarcoglycans prevent muscle damage during contraction²
 - All 4 functional sarcoglycans must be present to form a functional sarcoglycan complex³

Gene/Protein ⁴	Function ²	Disease ⁴
<i>SGCA</i> α-sarcoglycan	Stabilizes DAPC, prevents muscle damage during contraction	LGMD2D
SGCB β-sarcoglycan	Stabilizes DAPC, prevents muscle damage during contraction	LGMD2E
SGCG γ-sarcoglycan	Stabilizes DAPC, prevents muscle damage during contraction	LGMD2C
SGCD δ-sarcoglycan	Stabilizes DAPC, prevents muscle damage during contraction	LGMD2F

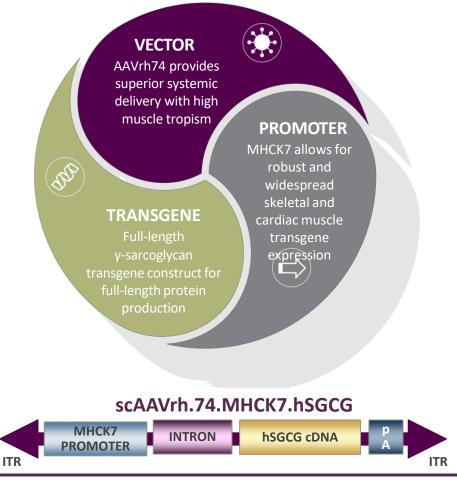
1. Mah JK, et al. Can J Neurol Sci. 2016;43(1):163-177. 2. McNally EM. The Sarcoglycans. Landes Bioscience 2000-2013. www.ncbi.nlm.nih.gov/books/NBK6317/. Accessed March 21, 2019. 3. Allen DG, et al. Physiol Rev. 2016;96(1):253-305. 4. Liewluck T, Milone M. Muscle Nerve. 2018;58(2):167-177.


LGMD2C (y-Sarcoglycanopathy) Overview

- Phenotype can present similar to that of DMD with severe, progressive proximal muscle weakness; however, some patients may exhibit a milder phenotype
- Symptoms may arise early in life, typically before age 10, and presentation may occur up to the second decade of life
- Common examination features include calf hypertrophy, scapular winging, macroglossia and lumbar hyperlordosis
- Diagnosis is typically established by a lack or reduction of γ-sarcoglycan expression on biopsies or genetic testing
- Respiratory failure and cardiomyopathy are common features and should be actively screened for
- Serum CK activity is generally moderate to high, but can range from 1000 U/L to 25,000 U/L

Adeno-associated Virus (AAV)-Mediated Gene Transfer

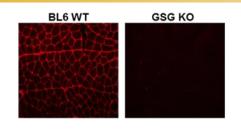
- Adeno-associated viruses (AAV) are small, nonenveloped viruses that, unlike adenoviruses, have not been associated with human disease.^{5,6}
- Several AAV serotypes have been identified, each with a different tissue tropism. This allows for specific tissue targeting with AAV-mediated gene therapies.⁵
- Delivers transgenes via nonintegrating, stable, extrachromosomal episomes to the nucleus, thereby limiting the risk of insertional mutagenesis seen with other viral vectors.⁵



^{1.} Naso MF, et al. BioDrugs. 2017;31(4):317-334. 2. US National Library of Medicine, Lister Hill National Center for Biomedical Communications. Genetics Home Reference. Help me Understand Genetics: *Gene Therapy*. Bethesda, Maryland: 2013. https://ghr.nlm.nih.gov/primer/therapy/genetherapy. Accessed August 29, 2018. 3. Zheng C, Baum J. *Methods Mol Biol*. 2008;434:205-219. 4. Chamberlain K, et al. *Hum Gene Ther Methods*. 2016;27(1):1-12. 5. Balakrishnan B, Jayandharan GR, *Curr Gene Ther*. 2014; 14:1-15. 6. Atchison RW et al. Science 1965; 149(3685): 754-6.

scAAVrh74.MHCK7.hSGCG for the Treatment of LGMD2C (γ-sarcoglycanopathy)

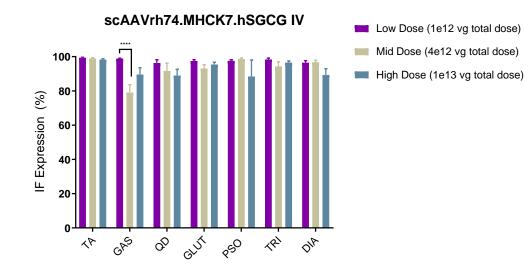
AAVrh74.MHCK7.hSGCC

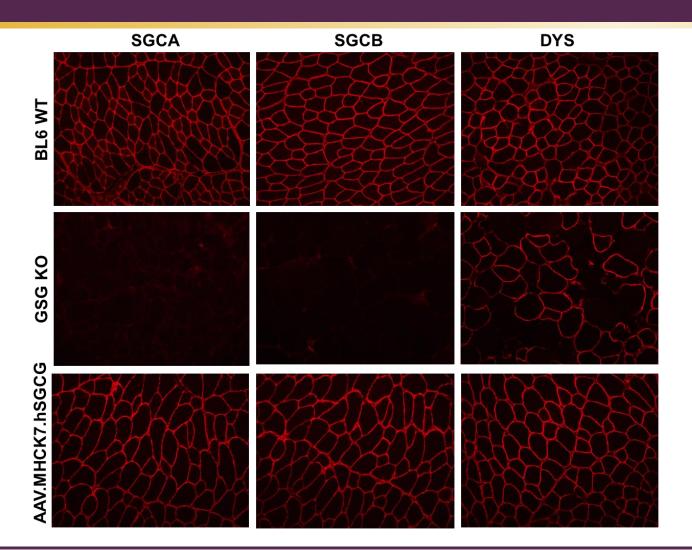

The scAAVrh74.MHCK7.hSGCG construct was designed to restore functional full-length γsarcoglycan to muscle cells

- AAVrh74 was chosen based on skeletal muscle transduction in preclinical testing¹⁻³
 - Because muscle cells do not divide, AAVrh74-transduced muscle fibers may theoretically be protected indefinitely
 - AAVrh74 provides systemic delivery, including to cardiac muscle
 - Preclinical data support single-administration hypothesis
- The MHCK7 promoter is optimized for the desired expression in skeletal and cardiac muscle expression regulated by α-MHC to enhance cardiac expression^{2,3}
- y-sarcoglycan transgene is a Full-Length gene construct for y-sarcoglycan⁴

ITR, inverted terminal repeat; hSGCB, human β-sarcoglycan; pA, poly-A tail

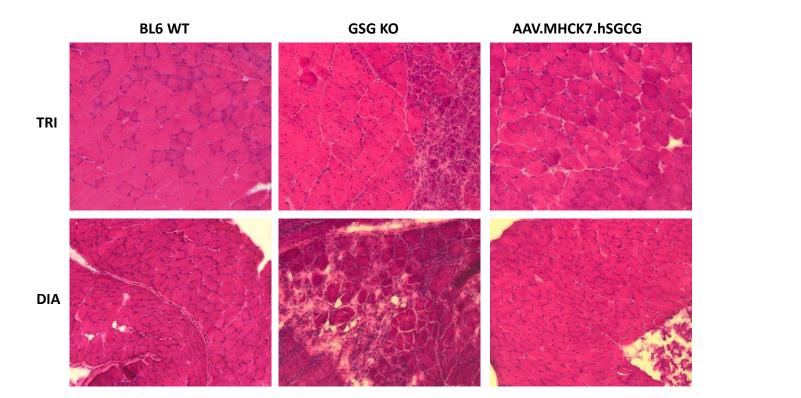
1. Chicoine LG et al. Mol Ther 2013;22:338-47. 2. Pozsgai ER. Mol Ther 2017;25:855-69. 3. Salva MZ, et a. Mol Ther. 2007;15(2):320-329. 4. Colella P, et al. Mol Ther Methods Clin Dev 2017;8:87-104.

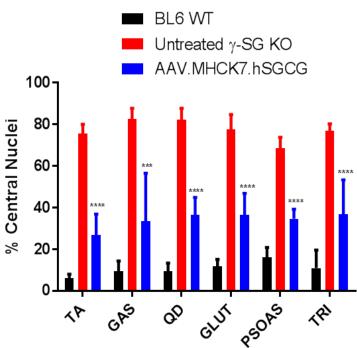

Systemic scAAVrh.74.MHCK7.hSGCG Restores γ-Sarcoglycan Expression in *GSG KO* Mice


AAV.MHCK7.hSGCG Treated

	ТА	GAS	QUAD	GLUT	PSOAS	TRI
Left						
Right						
	DIAPHRAGM BL6 WT	GSG KO	AAV.MHCK7.hSGCG	HEART BL6 WT	GSG KO	AAV.MHCK7.hSGCG

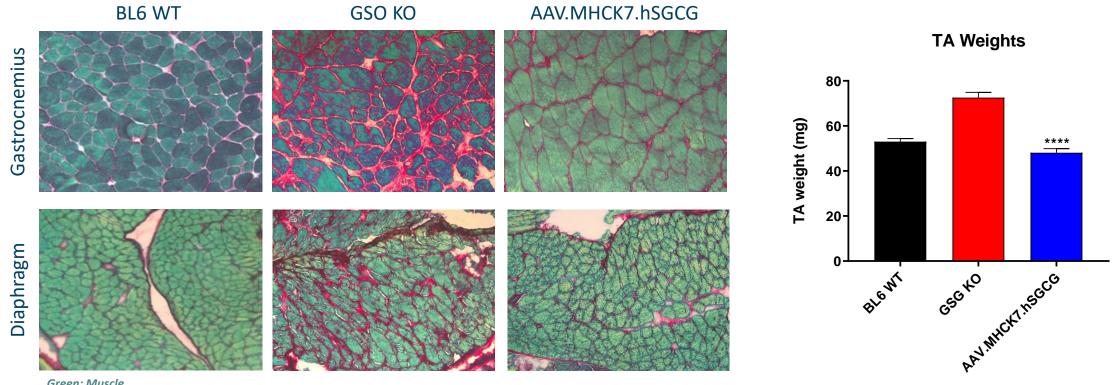
- hSGCG Expression in Three Dosing Cohorts 12 Weeks Post IV Gene Delivery
- Widespread Expression in Skeletal and Cardiac
 Muscle
- hSGCG Correctly Localizes to Sarcolemma

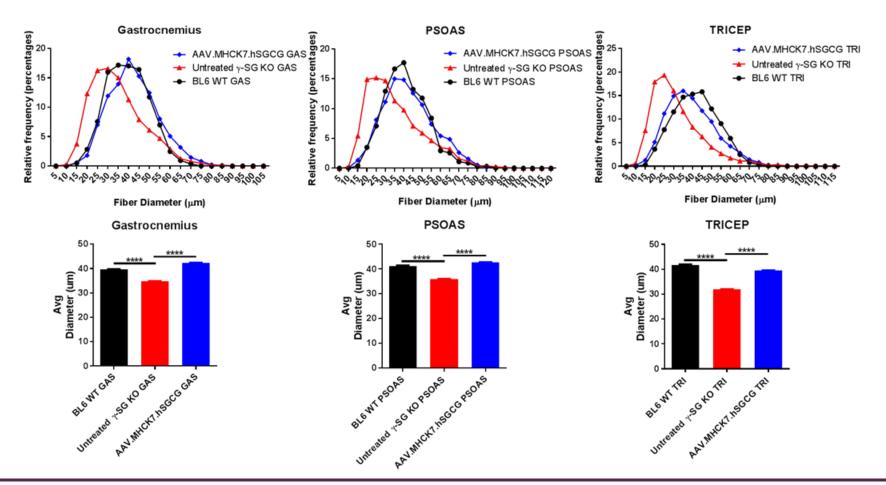

Restoring γ-Sarcoglycan At the Membrane Leads to Restoration of Other DAPC Components



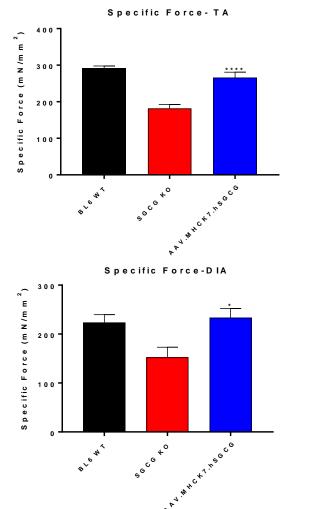
- Re-assembly of dystrophin associated protein complex (DAPC) at sarcolemma
 - GSG KO mice show absent or reduced sarcolemma expression of α-sarcoglycan, βsarcoglycan, and dystrophin.
 - Treatment with AAV.MHC7.hSGCG
 - Increased α-sarcoglycan and βsarcoglycan subunit expression at the sarcolemma in GSG KO mice
 - Increased expression of dystrophin at the sarcolemma in GSG KO mice

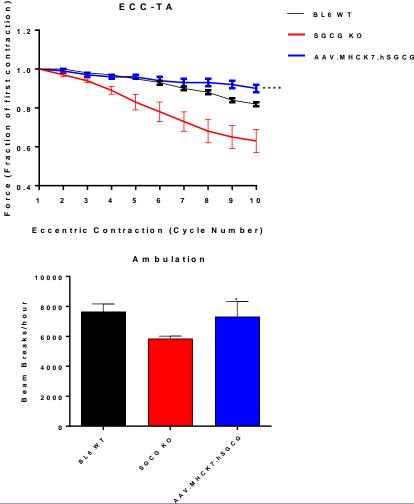
Improved Muscle Morphology Following γ-Sarcoglycan Gene Transfer


55% average reduction in central nucleation across skeletal muscle tissue of GSG KO mice after y-sarcoglycan gene transfer


Systemic γ-Sarcoglycan Gene Delivery to Diseased GSG KO Mice Reduced Muscle Fibrosis

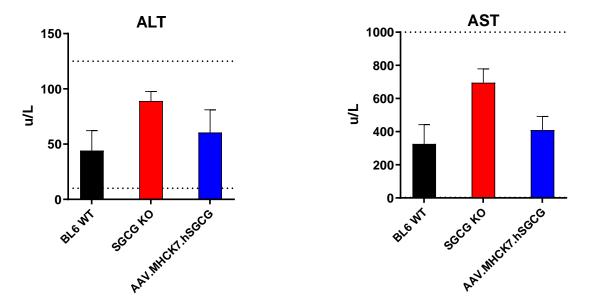
Reduction in Fibrotic Tissue Deposition and Normalized Muscle Weight in Treated Muscle


Green: Muscle Pink: Fibrosis/Scar Tissue


Expression of γ-Sarcoglycan Transgene in GSG KO Muscle Normalizes Muscle Fiber Distribution and Increases Muscle Fiber Size

Distribution of Fiber Size is Normalized After hSGCG Gene Delivery

Functional Improvement Resulting from Systemic γ-Sarcoglycan Gene Transfer



- Functional benefits to skeletal muscle
 - GSG KO mice show impairments in muscle
 force production, lack of resistance to
 contraction-induced injury and reduction in
 ambulatory activity.
 - Treatment with AAV.MHC7.hSGCG
 - Improved specific force in the TA and DIA
 - Improved resistance to contractioninduced injury
 - Restored ambulatory activity to normal wild type levels

No Observed Adverse Effects in Pre-clinical Safety Studies

Serum Liver Enzymes Reduced and No Histopathological Findings Following Gene Transfer

	Test Article (vector dose)	Age at Injection	Treatment Length	Tissues Analyzed	Histopathology
sc	CAAVrh.74.MHCK7.hSGCG (1e13vg total dose)	4 weeks	12 weeks	Skeletal Muscles, Heart, Lungs, Kidney, Liver, Spleen, Gonads	*NF

*NF – No histopathological findings in independent veterinary review

Conclusions from γ -Sarcoglycan Pre-Clinical Studies in GSG KO Mice

- GSG KO mice are complete KO of SGCG, recapitulate LGMD2C disease phenotype
- Widespread high level expression of hSGCG transgene
- Upregulation and re-assembly of DAPC
- Improved muscle morphology following γ-sarcoglycan gene transfer
- Restored muscle strength and increased ambulation in treated GSG KO mice
- No Observed Adverse Effect Level (NOAEL) in treated GSG KO mice

AAV γ-Sarcoglycan Gene Therapy Program Synopsis

Design Consideration	Driven By	Output
Tissue targeting (skeletal and cardiac)	AAVrh74 Promoter	Transduction and expression in muscles and heart
No Safety Events	AAVrh74 Full-Length Transgene	No Toxic Histopathology
Correct localization (hSGCG and DAPC proteins)	Promoter Transgene	Restoration of DAPC
Function	Transgene	Improvements in specific force, resistance to injury, ambulation

Thank you