Delayed Pulmonary Progression in Golodirsen-Treated Patients With Duchenne Muscular **Dystrophy vs Mutation-Matched External Controls**

Joel Iff,1 Edward Tuttle,2 Yunjuan Liu,2 Fangzhou Wei,² Nicolae Done,² Laurent Servais,^{3,4} Andreea M. Seferian,⁵ Volker Straub, 6 Michela Guglieri, 6 Eugenio Mercuri, 7,8 Francesco Muntoni 9,10

Introduction

- Duchenne muscular dystrophy (DMD) is a rare, fatal, genetic disease caused by a lack of dystrophin protein, which leads to progressive and irreversible muscle damage from birth1
- · Pulmonary decline in DMD leads to the irreversible disease milestone of pulmonary insufficiency, which affects patients' quality of life, increasing the risk of hospitalization, morbidity, and mortality²
- $^{\circ}$ Studies have established a linear decline in pulmonary function of $^{\sim}5$ percentage points between 10 and 18 years^{6,7}
- Golodirsen is FDA approved for the treatment of DMD in boys with mutations amenable to exon 53 skipping and has been shown in Study 4053-101 (NCT02310906) to have functional benefits in a declining population of patients with DMD vs mutation-matched external controls (ECs)^{6,8}

Objective

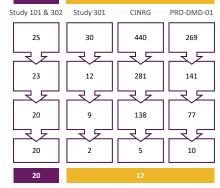
To compare longitudinal trajectories of percent predicted forced vital capacity (FVC%p) and projected time to cough-assist and nighttime ventilation in patients with DMD receiving golodirsen vs mutation-matched EC patients

Methods

Data sources

- · Golodirsen-treated patients were from Study 4053-101 who continued into the open-label 3-year Study 4045-302 (NCT03532542) and were required to have at least 2 FVC%p assessments at age ≥10 years during the study period
- EC patients were from the Cooperative International Neuromuscular Research Group (CINRG) (NCT00468832),9 PRO-DMD-01 (NCT01753804),10 and Study 4658-301 (NCT02255552),¹¹ and were required to have confirmed mutations amenable to exon 53 skipping and at least 1 FVC%p assessment between the ages of 10 and 12 years followed by at least 1 additional valid FVC%p assessment


Statistical analyses


- A mixed-effects model for repeated measures was used to evaluate the impact of golodirsen on the decline in FVC%p
- The model was fit with FVC%p as the response variable and with treatment group (golodirsen vs EC), age (at visit), and the interaction between treatment group and age as the fixed effects and the patient-level random effects
- Models with and without adjusting for baseline FVC%p and age were estimated, and measures of model fit (ie, the Akaike information criterion [AIC] and Bayesian information criterion [BIC]) were assessed
- Average annual rate of FVC%p decline was predicted using a linear extrapolation of the model-estimated decline in FVC%p from the average FVC%p values observed in patients between ages 10 and 18 years
- Time to cough-assist (recommended FVC%p ≤60) and nighttime ventilation (recommended FVC%p ≤50) was predicted using a linear extrapolation of the model-estimated decline in FVC%p (from average FVC%p readings observed)

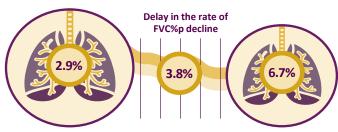
Results

- A total of 37 patients met the inclusion criteria (F1)
- At baseline, golodirsen-treated (n=20) and mutation-matched EC (n=17) patients were well-balanced for age and FVC%p
- Golodirsen-treated patients had a longer average follow-up duration (mean [SD], 3.6 [1.8] years) than the mutation-matched EC patients (2.4 [1.3] years) (T1)

F1 Pulmonary Analysis Population Selection Flowchart

CINRG=Cooperative International Neuromuscular Research Group; FVC%p=percent predicted forced vital capacity

T1 Summary of Patient Characteristics

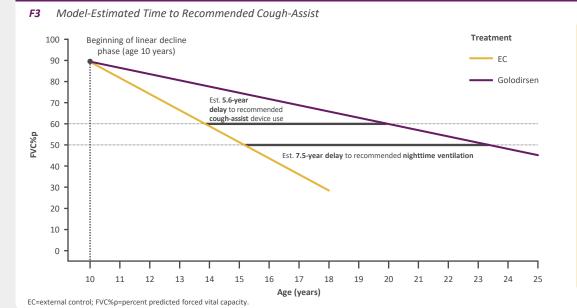

	Total N=37	Golodirsen N=20 (A)	EC N=17 (B)	Mean Difference (B) – (A)	<i>P</i> -value ^a
Baseline age, years					
Mean ± SD	10.4 ± 0.4	10.3 ± 0.3	10.4 ± 0.4		
Median	10.3	10.3	10.3	0.1 ± 0.1	0.34
Range	(10.0, 11.5)	(10.0, 11.2)	(10.0, 11.5)	0.1 ± 0.1	0.54
Missing, n (%)	0/37 (0.0)	0/20 (0.0)	0/17 (0.0)		
Baseline FVC					
Mean ± SD	1.7 ± 0.4	1.7 ± 0.3	1.8 ± 0.5		
Median	1.7	1.7	1.8	0.1 ± 0.1	0.45
Range	(0.9, 3.2)	(0.9, 2.8)	(1.3, 3.2)	0.1 ± 0.1	
Missing, n (%)	0/37 (0.0)	0/20 (0.0)	0/17 (0.0)		
Baseline FVC%p					
Mean ± SD	89.5 ± 17.9	89.5 ± 15.3	89.4 ± 21.0		
Median	88.0	89.2	87.0	0.0 ± 6.2	1.00
Range	(51.4, 136.0)	(51.4, 132.2)	(57.0, 136.0)	0.0 ± 0.2	1.00
Missing, n (%)	0/37 (0.0)	0/20 (0.0)	0/17 (0.0)		
Length of follow-up,	years				
Mean ± SD	3.1 ± 1.7	3.6 ± 1.8	2.4 ± 1.3		
Median	2.4	3.2	2.1	-1.2 ± 0.5	<0.05
Range	(0.9, 7.1)	(0.9, 7.1)	(0.9, 6.0)	-1.2 ± 0.5	
Missing, n (%)	0/37 (0.0)	0/20 (0.0)	0/17 (0.0)		

^aP-values from 2 sample t-tests comparing golodirsen-treated and EC groups are reported. EC=external control; FVC=forced vital capacity; FVC%p=percent predicted forced vital capacity.

Golodirsen attenuates the rate of FVC%p decline:

- Results from the adjusted model for baseline age and baseline FVC%p indicated an attenuation of 3.8 percentage points in the annual rate of FVC%p decline for golodirsen-treated patients vs mutation-matched EC patients (2.9% vs 6.7%, respectively; *P*<0.01) (**F2**)
- A previously published analysis of eteplirsen vs mutation-matched EC patients demonstrated similar rates of FVC%p decline¹²
- The model adjusted for baseline age and FVC%p had the best fit of the 3 models estimated based on lower values of both the AIC and the BIC (T2)

F2 Attenuation of FVC%p Decline in Golodirsen-Treated vs EC Patients


EC=external control: EVC%p=percent predicted forced vital capacity

T2 Model-Based Slope Estimates of Decline in FVC%p

	MMRM					
Characteristic	Unadjusted	Adjusted for Baseline Age	Adjusted for Baseline Age and FVC%p			
Constant	155.87*** (13.69)	-7.34 (90.08)	19.38 (39.08)			
Age	-6.07*** (1.11)	-6.27*** (1.12)	-6.67*** (1.06)			
Golodirsen	-35.78** (16.16)	-35.96** (16.07)	-41.14*** (14.44)			
Baseline age	-	15.85* (8.65)	5.86 (3.88)			
Baseline FVC%p	-	-	0.92*** (0.08)			
Age × golodirsen	3.22** (1.28)	3.39*** (1.28)	3.77*** (1.22)			
N observations	244	244	244			
N patients	37	37	37			
AIC	1956.4	1949.0	1894.9			
BIC	1977.4	1973.5	1922.9			

*P<0.1. **P<0.05. ***P<0.01. Data are mean (SE) unless otherwise noted.

capacity; MMRM=mixed-effects model for repeated measures

Mutation-matched EC

Golodirsen delays the time in which patients reach pulmonary milestones (F3):

The **estimated delay** in time to reach cough-assist for golodirsen-treated patients vs mutationmatched EC patients was 5.6 (~14 vs 19) years

The **estimated delay** in time to nighttime ventilation for golodirsentreated patients vs mutation-matched EC patients was 7.5 (~16 vs 23) years

Key Finding

Golodirsen treatment was associated with significant attenuation of pulmonary decline based on FVC%p

Conclusions

This analysis of clinical trial data for golodirsen-treated and mutation-matched EC patients demonstrated that golodirsen was associated with significant attenuation in the rate of decline in FVC%p (2.9% vs 6.7%; P<0.01)

• A previously published analysis of eteplirsen vs mutation-matched EC patients demonstrated similar rates of FVC%p decline12

Data suggest clinically meaningful delays in reaching the need for recommended cough-assist and nighttime ventilation, implying clinically meaningful delays of 5 years or more in reaching pulmonary milestones

These data provide the longest follow-up of pulmonary benefit in a declining DMD population treated with golodirsen vs EC patients (see poster M162 for more details)

Acknowledgments & Disclosures

Acknowledgments

The authors and Sarepta Therapeutics, Inc., thank the patients and their families. Study 3045-302 (NCT02500381) was funded by Sarepta Therapeutics, Inc. Editorial support was provided by Paraskevi Briassouli, PhD, of Eloquent Scientific Solutions and was funded by Sarepta Therapeutics, Inc.

JI: Employee of Sarepta Therapeutics, Inc., and may own

stock/options in the company. ET, YL, FW, ND: Employees of Analysis Group, Inc., which received payment from Sarepta Therapeutics, Inc., for participation in this research. LS, MG: Received speaker honoraria from and have research collaborations with Sarepta Therapeutics, Inc. AMS: Has research collaborations with Sarepta Therapeutics, Inc. VS: Participated in advisory boards, received speaker honoraria, and has a research collaboration with Sarepta Therapeutics, Inc. EM: Received consultant fees from Sarepta Therapeutics, Inc. FM: Received consultant fees and speaker honoraria from Sarepta Therapeutics, Inc. Previously presented at the 28th International Annual Congress of the World Muscle Society, October 3–7, 2023, Charleston, SC; AMCP Nexus, October 16-19, 2023, Orlando, FL.

References

- 1. Birnkrant DJ. et al. Lancet Neurol. 2018:17:347-61.
- 2. Tsuda T. et al. Methods Mol Biol. 2018:1687:19-28.
- 3. Kinane TB, et al. J Neuromuscul Dis. 2018;5:47-58.
- 5. Benditt JO, et al. Phys Med Rehabil Clin N Am. 2005;16:1125-39
- 6 Servais L et al Nucleic Acid Ther 2022:32:29-39
- 7. Bello L, et al. Ann Clin Transl Neurol. 2020;7:786-98.
- 8. https://www.accessdata.fda.gov/drugsatfda_docs/label/20 19/211970s000lbl.pdf [Accessed July 12, 2023].
- 9. ClinicalTrials.gov. NCT00468832.
- https://clinicaltrials.gov/ct2/show/NCT00468832.
- 10. Clinical Trials.gov. NCT01753804. https://clinicaltrials.gov/ct2/show/NCT01753804
- ${\bf 11. Clinical Trials. gov.\ NCT 02255552.}$
- https://clinicaltrials.gov/ct2/show/NCT02255552
- 12.Iff J, et al. Muscle Nerve. 2022;66(3):262-269.

SCAN THE QR CODE

The QR code is intended to provide scientific information for individual reference, and the information should not be altered or reproduced in

https://www.sareptacongresshub.com/MDA2024/Pulm onaryGolo/Iff

> Presented at the 2024 MDA Clinical and Scientific Conference;

March 3-6, 2024; Orlando FL