Presented at the 2023 Muscular Dystrophy Association's Clinical & Scientific Conference, March 19-22, 2023; Dallas, TX

Management of Patients Following Investigational Delandistrogene Moxeparvovec Gene Therapy for Duchenne Muscular Dystrophy: Delphi Panel Consensus Considerations Based on Clinical Trial Experience

Natalie L. Goedeker, CPNP¹; Amal A. Aqul, MD²; Russell J. Butterfield, MD, PhD³; Anne M. Connolly, MD⁴; Ronald G. Crystal, MD⁵; Kara E. Godwin, MSN, APRN, PNP-BC⁶; Kan N. Hor, MD⁴; Katherine D. Mathews, MD, FAAN⁷; Crystal M. Proud, MD⁸; Elizabeth Smyth, MSN, FNP⁶; Aravindhan Veerapandiyan, MD⁹; Paul B. Watkins, MD¹⁰; Craig M. Zaidman, MD¹; Jerry R. Mendell, MD⁴

¹Washington University School of Medicine and St Louis Children's Hospital, St Louis, MO; ²Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX; ³University of Utah School of Medicine, Salt Lake City, UT; ⁴Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH; ⁵Department of Genetic Medicine, Weill Cornell Medical College, New York, NY; ⁶Sarepta Therapeutics, Cambridge, MA; ⁷Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA; ⁸Children's Hospital of the King's Daughters, Norfolk, VA; ⁹Division of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA; ⁸Children's Hospital of the King's Daughters, Norfolk, VA; ⁹Division of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA; ⁸Children's Hospital of the King's Daughters, Norfolk, VA; ⁹Division of Neurology, University of Iowa City, IA; ⁸Children's Hospital of the King's Daughters, Norfolk, VA; ⁹Division of Neurology, University of Iowa City, IA; ⁸Children's Hospital of the King's Daughters, Norfolk, VA; ⁹Division of Neurology, University of Iowa City, IA; ⁸Children's Hospital of the King's Daughters, Norfolk, VA; ⁹Division of Neurology, University of Iowa City, IA; ⁸Children's Hospital of the King's Daughters, Norfolk, VA; ⁹Division of Neurology, University of Iowa City, IA; ⁸Children's Hospital of the King's Daughters, Norfolk, VA; ⁹Division of Neurology, University of Iowa City, IA; ⁸Children's Hospital of the King's Daughters, Norfolk, VA; ⁹Division of Neurology, University of Iowa City, IA; ⁸Children's Hospital of the King's Daughters, Norfolk, VA; ⁹Division of Neurology, University of Iowa City, IA; ⁸Children's Hospital of the King's Daughters, Norfolk, VA; ⁹Division of Neurology, University of Iowa City, IA; ⁸Children's Hospital of the King's Daughters, Norfolk, VA; ⁹Division of Neurology, University of Iowa City, IA; ⁹Division of Neurology, IOVA; ⁹Division Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, AR; ¹⁰Eshelman School of Pharmacy, University of North Carolina Institute for Drug Safety Sciences, Chapel Hill, NC

INTRODUCTION

devastating neuromuscular disease with a predictable disease

DMD is caused by the absence of functional dystrophin protein

in skeletal, cardiac, gastrointestinal, and respiratory muscle due

muscle degeneration, loss of ambulation, respiratory weakness,

Delandistrogene moxeparvovec is an investigational rAAVrh74-

SRP-9001 dystrophin protein, a shortened dystrophin retaining

key functional domains of the wild-type protein in skeletal and

clinical development program⁵⁻⁷ (Figure 1, Tables 1 and 2)

demonstrates that the safety profile in clinical trials is consistent,

based gene transfer therapy designed for targeted expression of

to mutations in the DMD gene; this absence leads to progressive

Duchenne muscular dystrophy (DMD), is a rare, X-linked

course that is progressive and ultimately fatal

Objective

A Delphi panel was convened to develop consensus considerations for the

CONCLUSIONS

- In clinical trials, the safety profile of delandistrogene moxeparvovec, informed by 85 patient exposures, has been consistent, monitorable, and manageable
- Significant adverse events included vomiting, myocarditis, acute liver injury, and immune-mediated myositis
- In view of the lack of available data regarding management of these select treatment-related SAEs that may arise following a gene therapy, a Delphi panel developed consensus considerations based on delandistrogene moxeparvovec clinical trials
- The Delphi panel findings provide considerations for patient management, diagnostic testing and evaluation, and treatments
- Delphi process limitations include potential bias based on the selection of panel members, exclusion of global perspectives, and absence of the patient/caregiver viewpoint
- These consensus considerations address the lack of available data and provide additional insight on patient management of potential adverse events that may arise following gene therapies

Poster #53

evaluation and management of selected treatment-related adverse events reported in delandistrogene moxeparvovec clinical studies

REFERENCES

- 1. Bushby K, et al. Lancet Neurol. 2010;9(1):77-93.
- 2. Barohn RJ, et al. N Engl J Med. 1988;319(1):15-8. 3. Mendell JR, et al. JAMA Neurol. 2020;77(9):1122-31
- 4. Mendell J, et al. Neuromuscular Disorders. 2022;32:S102-S103.
- 5. ClinicalTrials.gov. NCT03375164 (Accessed January 2023)
- 6. ClinicalTrials.gov. NCT03769116 (Accessed January 2023) 7. ClinicalTrials.gov. NCT04626674 (Accessed January
- 2023)

ACKNOWLEDGMENTS

The study was sponsored by Sarepta Therapeutics (Cambridge, MA, USA). Medical writing assistance was provided by June Stevens, PharmD of PharmaWrite, LLC (Princeton, NJ, USA), and was funded by Sarepta Therapeutics.

DISCLOSURES

NLG: consultancy/advisory role with and speakers' bureau for Novartis. AAA, KDM, and PBW: No relevant disclosures dvisory role with Bristol-Myers Squibb, Capricor Therapeutics, Catabasis Pharmaceuticals, Daiichi Sankyo, PTC Therapeutics, Revidia Therapeutics, Sarepta Therapeutics, Stealth Biotherapeutics, Vertex Pharmaceuticals, and Wave Life Science; g from Sarepta Therapeutics; speakers' bureau for NS Pharma and PTC Therapeutics; other relationship(s) with Blade Therapeutics (DSMB) and FibroGen (DSMB). RGC: equity interest in and consultancy/advisory role with LEXEO Therapeutics and XyloCor Therapeutics. AV: consultancy/advisory role with AMO Pharma, AveXis, Biogen, Edgewise Therapeutics, Fibrogen, Novartis, Pfizer, PTC Therapeutics, Sarepta Therapeutics, and Scholar Rock; research funding from AMO Pharma, Capricor Therapeutics, Edgewise Therapeutics, Fibrogen, Muscular Dystrophy Association, Novartis, Parent Project Muscular Dystrophy, Pfizer, RegenxBio and Sarepta Therapeutics; other relationship(s) with Medlink Neurology for editorial services. **KEG and ES:** employment with Sarepta Therapeutics. **RJB:** consultancy/advisory role with Aavanti, Biogen, Reata, Sarepta Therapeutics, and Scholar Rock. AMC: consultancy/advisory role with Biohaven, Edgewise, Sarepta Therapeutics, and Scholar Rock; research funding from Biohaven Edgewise, Fibrogen, MDA, Sarepta Therapeutics, and Scholar Rock. CMP: consultancy/advisory role with AveXis/Novartis Gene Therapies, Biogen, Genentech/Roche, Sarepta Therapeutics, and Scholar Rock; research funding from AveXis/Novartis Gene Therapies, Astellas, Biogen, CSL Behring, Fibrogen, PTC, Pfizer, Sarepta, and Scholar Rock; speakers' bureau for Biogen. CMZ: consultancy/advisory role with Biogen, Optum; research funding from Biogen, Novartis; speakers' bureau for Sarepta JRM: research funding from Sarepta Therapeutics; patents, royalties, or other intellectual property as co-inventor of AAVrh74.MHCK7. SRP-9001-dys technology

8. Zaidman C, et al. Poster presented at: The World Muscle Society Congress, October 11-15, 2022; [P.129]

9. Sarepta/Roche data on file. 10. Mendell JR, et al. Poster presented at: The World Muscle Society Congress; October 11-15, 2022; [LSP36] 11. Mendell JR, et al. Poster presented at: The 2021 MDA Virtual Clinical & Scientific Conference; March 15-18,

2021. [Virtual format] 12. ClinicalTrials.gov NCT05096221 (Accessed January 2023)

 A total of 366 treatment-related adverse events (TRAEs) were reported by 73/85 (85.9%) patients (**Table 1**)

Safety data from the delandistrogene moxeparvovec

Most were mild to moderate in severity

monitorable, and manageable (**Figure 2**)

- Most TRAEs occurred within 90 days of treatment and resolved
- A small number of treatment-related serious adverse events (SAEs) requiring medical intervention were identified (**Table 1**)^{8,9}
 - Vomiting
- Myocarditis
- Acute liver injury (ALI)

and cardiomyopathy^{1,2}

cardiac muscle^{3,4}

Figure 1. Delandistrogene Moxeparvovec* Clinical Development Program

STUDY 101	STUDY 102	STUDY 103	STUDY 301 ¹²	STUDY 303 ⁹
Safety and proof of concept n=4	Double-blind, placebo-controlled safety and efficacy n=41	Safety and efficacy (expression) of scalable commercially representative material n=40 ⁺	Double-blind, placebo-controlled efficacy confirmation in 4-7 year old ambulatory patients	Double-blind, placebo-controlled safety and efficacy in non-ambulatory patients
TRIAL 1 NCT03375164 Nationwide Children's Hospital	TRIAL 2 NCT03769116	ENDEAVOR NCT04626674	EMBARK NCT05096221	ENVISION
 Goals included safety, proof-of-concept One-year results published in <i>JAMA Neurology</i>³ 4-year functional data presented in October 2022¹⁰ 	 4-7 years of age Goals included safety, function Data reported from Part 1¹¹ Part 2 data presented in October 2022¹⁰ 	 Ambulant and non-ambulant Clinical study using commercially representative material Data reported from 20 patients Part 1, Cohort 1 (ambulant 4-7 years of age)⁸ 	 4-7 years of age Global study NSAA (primary endpoint) 	 Non-ambulatory patients (no age restriction) and ambulatory patients (8-17 years of age) Global study Primary endpoint: PUL

*Single IV administration at a dose equivalent of 1.33E14 vg/kg using a linear standard-based PCR titration method. ¹40 patients included in 120-day safety report (through April 6, 2022); currently study includes 52 patients. NSAA, North Star Ambulatory Assessment; PUL, Performance of Upper Limb.

Table 1. Delandistrogene Moxeparvovec Safety Results (Studies 101, 102, 103)^{5-7,9}

	Treated Patients* (N=85)
Number of AEs	1,282
Number of TEAEs	1,230
Number of treatment-related TEAEs	366
Number of SAEs	13
Number of treatment-related SAEs	9
Patients with any AEs, n (%)	82 (96.5)
Patients with any TEAEs, n (%)	82 (96.5)
Patients with any treatment-related TEAEs, n (%)	73 (85.9)
Deaths, n (%)	0
Patients with any SAEs, n (%)	11 (12.9)
Patients with any treatment-related SAEs, n (%)	7 (8.2)
Patients with any AEs leading to discontinuation, n (%)	0

Table 2. Most Common TEAEs Occurring in >25% of Patients^{5-7,9}

	Treated Patients (N=85)
Vomiting, n (%)	52 (61.2)
Decreased appetite, n (%)	40 (47.1)
Nausea, n (%)	34 (40.0)
Upper respiratory tract infection, n (%)	36 (42.4)
Pain in extremity, n (%)	28 (32.9)
Abdominal pain upper, n (%)	23 (27.1)
Irritability, n (%)	22 (25.9)
Procedural pain, n (%)	23 (27.1)
Other selected TEAEs of special interest	
Acute liver injury, n (%) [†]	31 (36.5)
Immune-mediated myositis, n (%)	1 (1.2)
Myocarditis, n (%)	1 (1.2)

*The integrated safety data clinical cut-off dates were October 17, 2022 for SRP-9001-101; April 1, 2022 for SRP-9001-102 (Part 1); and September 19, 2022 for SRP-9001-103. AE, adverse event; TEAE, treatment-emergent adverse event; SAE, serious adverse event

*The integrated safety data clinical cut-off dates were October 17, 2022 for SRP-9001-101; April 1, 2022 for SRP-9001-102 (Part 1); and September 19, 2022 for SRP-9001-103. [†]Acute liver injury is a combination of multiple preferred terms and biochemical/lab-based observations that have been aggregated to represent acute liver injury and is therefore not included among the TEAEs occurring in >25% of patients.

TEAE, treatment-emergent adverse event.

Figure 2 Observed Timeline of Adverse Events Following Treatment With Delandistrogene Moxenaryovec⁹

WEEKS 1-2	WEEKS 4-8	
 Vomiting: occurred in 52/85 (61.2%) of patients⁹ 	• Acute liver injury: occurred in 31/85 patients (36.5%) ⁹	

Supported by funding from Sarepta Therapeutics.

- Immune-mediated myositis (IMM)
- Literature analysis revealed a paucity of available guidance for managing patients who experience TRAEs following administration of gene therapy
- A multidisciplinary panel of 12 US-based experts with gene therapy experience utilized a modified Delphi process to reach consensus considerations for management of vomiting, myocarditis, ALI, and IMM following treatment with delandistrogene moxeparvovec in the clinical setting
- Vomiting was observed as early as the day of the infusion and, in some cases, persisted over several weeks
- Myocarditis: occurred in 1/85 (1.2%) of patients⁹ - Elevated troponin I observed within 4 days after infusion
- Patient experienced serious vomiting requiring hospitalization; troponin was elevated
- Cardiac status remained stable
- With treatment, myocarditis resolved with sequelae over 4 weeks

ALI, acute liver injury; IMM, immune-mediated myositis; SAE, serious adverse event.

- Most ALI cases were asymptomatic and mild to moderate in severity
- Among patients in the safety set, 3 ALI events were reported as an SAE
- Increased transaminases (2 events) - Liver injury (1 event)
- Cases of ALI resolved with treatment over 4 weeks
- Immune-mediated myositis: occurred in 1/85 (1.2%) of patients⁹
- IMM occurred 1 month post infusion
- With treatment, IMM case resolved with sequelae (residual weakness) over 30 days

METHODS

- Conducted a literature search to retrieve published clinical studies, case series, and retrospective analyses reporting data and treatment strategies for vomiting, myocarditis, ALI, and IMM following gene therapy
- A multidisciplinary panel of 12 US-based experts with gene therapy experience utilized a modified Delphi process to reach consensus guidance on gene therapy-related consensus guidance on management of TRAEs following gene therapy (**Figure 3**)
- The Delphi process included 2 rounds of telephone surveys and 1 in-person meeting
- Experts rated their agreement using a 5-point Likert scale (1=strongly disagree; 5=strongly agree)
- Consensus was defined as \geq 58% of experts either agreeing (rating a statement 4 or 5) or disagreeing (rating a statement 1 or 2) with management decisions relating to case-based questions

Figure 3. Summary of Delphi Process

Literature Review

• Paucity of literature with guidance for management of gene therapy-related TRAEs

Assemble Delphi Panel

TRAE, treatment-related adverse event

Delphi Questionnaire 1

• Multidisciplinary panel of 12 US-based experts with gene therapy experience

Telephone interviews to collect free-text

• 146 unique responses collected

responses on management of selected TRAEs

Delphi Questionnaire 2

- Telephone interviews to assess agreement with Questionnaire 1 responses using a Likert scale
- Consensus defined as 7/12 (≥58%) of experts either agreeing or disagreeing
 - 100 responses achieved consensus agreement; 46 responses did not achieve consensus

In-person Meeting

• Convene Delphi panelists to discuss consensus responses

Final Consensus Statements

Panelists approve final consensus statements

C-

• The Delphi panel created consensus considerations for the evaluation and management of vomiting, myocarditis, ALI, and IMM following treatment with delandistrogene moxeparvovec in the clinical setting (Tables 3, 4, 5, 6)

Table 2 Concensus Considerations for Management of Vemiting

Table 3. Consensus Considerations for	wanagement of voniting
---------------------------------------	------------------------

Clinical trial experience

Vomiting was the most common AE (reported in 61.2%)⁹ Vomiting started as early as the day of infusion Vomiting was transient, resolving within weeks

General Consensus Considerations

₹ M

Patient/caregiver should follow up immediately if post-treatment vomiting occurs

• An antiemetic may be provided as needed Switch to IV steroids if oral steroids are not tolerated/retained due to vomiting

AE, adverse event; IV, intravenous

Table 4. Consensus Considerations for Management of Acute Liver Injury

Acute liver injury* was reported by 36.5% of patients⁹ Acute liver injury occurred within 4-8 weeks post infusion Observed cases resolved within 2 months

General Consensus Considerations

Clinical trial experience

• Patient/caregiver should follow up immediately to report symptoms such as jaundice or abdominal pain Monitor liver function weekly and increase or continue monitoring as clinically indicated

Treatment considerations should be based on timing of onset and severity of symptoms • Optimize steroid regimen

A consultation with a hepatologist may be considered

*Acute livery injury is a combination of multiple preferred terms and biochemical/lab-based observations that have been aggregated to represent acute liver injury and is therefore not included among the TEAEs occurring in >25% of patients.

Table 5. Consensus Considerations for Management of Myocarditis

Clinical trial experience

Myocarditis reported by 1 (1.2%) patient⁹ Elevated troponin I observed within first week following infusion Most cases resolved over 4 weeks

General Consensus Considerations

• Patient/caregiver should follow up immediately to report symptoms such as chest pain and shortness of breath • Monitor troponin weekly and increase or continue monitoring as clinically indicated

Treatment considerations should be based on duration and severity of troponin elevation and presence of symptoms Optimize steroid regimen and consider ECG, ECHO, and cMRI as clinically indicated

F A consultation with a cardiologist may be considered

cMRI, cardiac magnetic resonance imaging; ECG, electrocardiogram; ECHO, echocardiogram.

Table 6. Consensus Considerations for Management of Immune-Mediated Myositis

Clinical trial experience

Immune-mediated myositis occurred in 1 (1.2%) of patients⁹ Immune-mediated myositis occurred 4 weeks post infusion Observed case resolved (with sequelae, residual muscle weakness) over 30 days

General Consensus Considerations

	Patient/caregiver	hould follow up immediately to report symptoms such as severe muscle weakness, hypophonia, dysphagia, and/or dyspnea	
)	Increase physical	and laboratory monitoring as clinically indicated	

Treatment considerations may include targeted immunosuppressant therapy, steroid regimen optimization, and other interventions as clinically appropriate

A consultation with an immunologist may be considered