Evaluation of the Pharmacokinetic and Pharmacodynamic Properties of SRP-5051 in Nonhuman Primates After Single and Multiple Doses

Mohammad Shadid, Mark Wysk, Jianbo Zhang, Pavlo Kovalenko, Jenna Wood, Claire Mukashyaka, Leslie Wu, Shawn Harriman, John R. Hadcock

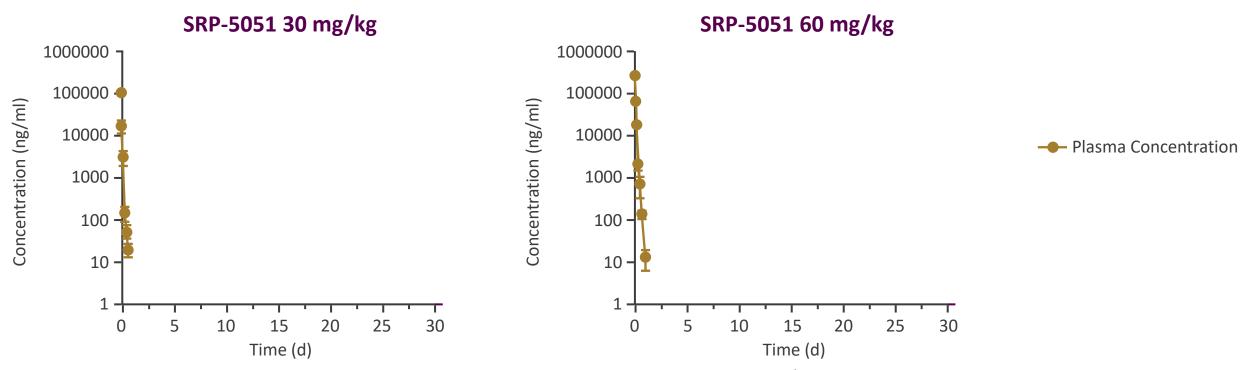
Presented by Mohammad Shadid

Sarepta Therapeutics, Inc., Cambridge, MA, USA

Disclosures

- All authors are employees of Sarepta Therapeutics, Inc. and may own stock in the company
- The study was funded by Sarepta Therapeutics, Inc.
- Editorial support was provided by Eloquent Scientific Solutions and was funded by Sarepta Therapeutics, Inc.
- Products are investigational only

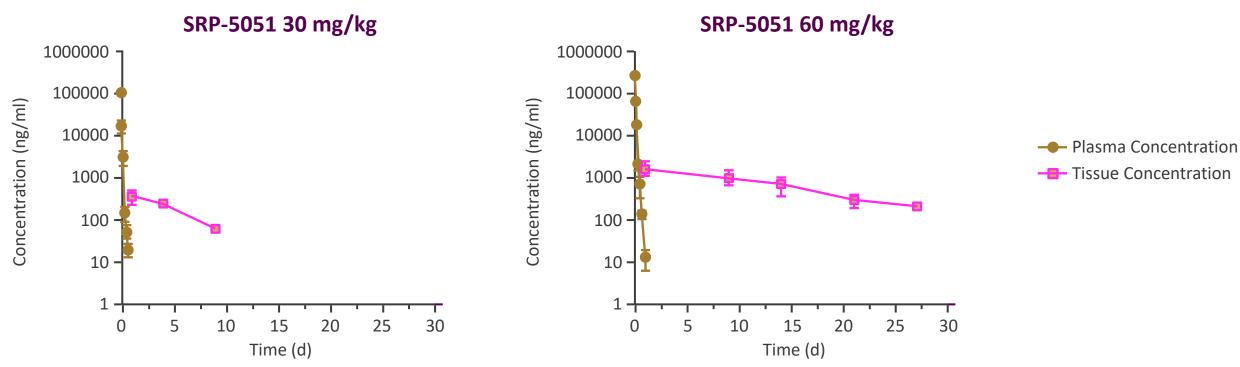
Introduction


- Duchenne muscular dystrophy (DMD) is a severe, X-linked neuromuscular disease caused by mutations in the dystrophin gene¹
 - Dystrophin mutations leading to deletions flanking exon 51 account for 13% of all DMD patients²
- Phosphorodiamidate morpholino oligomers (PMOs) are an effective treatment approach for patients with DMD³⁻⁶
- PMOs are designed for targeted skipping of exons within the DMD gene; they restore the reading frame and allow for production of an internally truncated but functional dystrophin protein
- Peptide PMOs (PPMOs) are a next-generation chemistry platform in which a cell-penetrating peptide is conjugated to the PMO backbone, with the goal of increasing cellular uptake, exon skipping, and dystrophin production^{7,8}
- SRP-5051 is an investigational PPMO designed to skip exon 51 of the DMD gene

Objective: To assess the pharmacokinetic and pharmacodynamic properties of SRP-5051, including muscle tissue uptake and duration of effect, after single and multiple doses in a nondystrophic nonhuman primate model

^{1.} Birnkrant DJ, et al. *Lancet Neurol*. 2018;17:251-67. 2. Aartsma-Rus A, et al. *Hum Mutat*. 2009;30:293-9. 3. Popplewell LJ, et al. *Mol Ther*. 2009;17:554-61. 4. Exondys 51 [package insert]. Cambridge, MA: Sarepta Therapeutics, Inc.; 2020. 5. Vyondys 53 [package insert]. Cambridge, MA: Sarepta Therapeutics, Inc.; 2020. 6. Viltepso [package insert]. Paramus, NJ: NS Pharma, Inc.; 2020. 7. Gan L, et al. Poster presented at the 2019 Muscular Dystrophy Association (MDA) conference. April 13–17, 2019. Orlando, FL. 8. Echevarría L, et al. Hum Mol Genet. 2018; 27:R163-72.

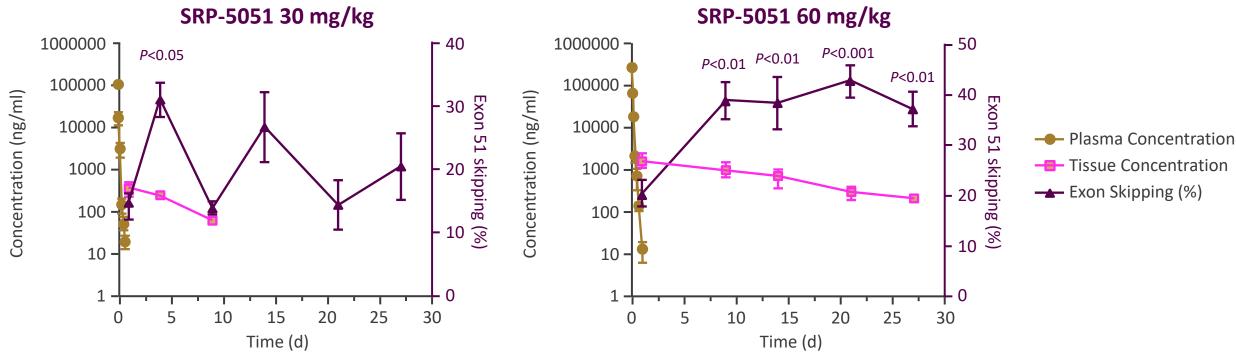
Plasma PK of SRP-5051 after Single Dose in Nondystrophic Nonhuman Primates



Error bars represent SE. Animals received a single 1-hour IV infusion of SRP-5051 at dose levels of 30 and 60 mg/kg. Blood samples were collected on Day 1: pre-dose and 1, 2, 4, 8, 12, 16, and 24 hours post-infusion. Muscle samples were collected on days 2, 5 (only for the 30 mg/kg group), 10, 15, 22 and 28 by biopsy.

SRP-5051 has a short plasma half-life (~2 hours)

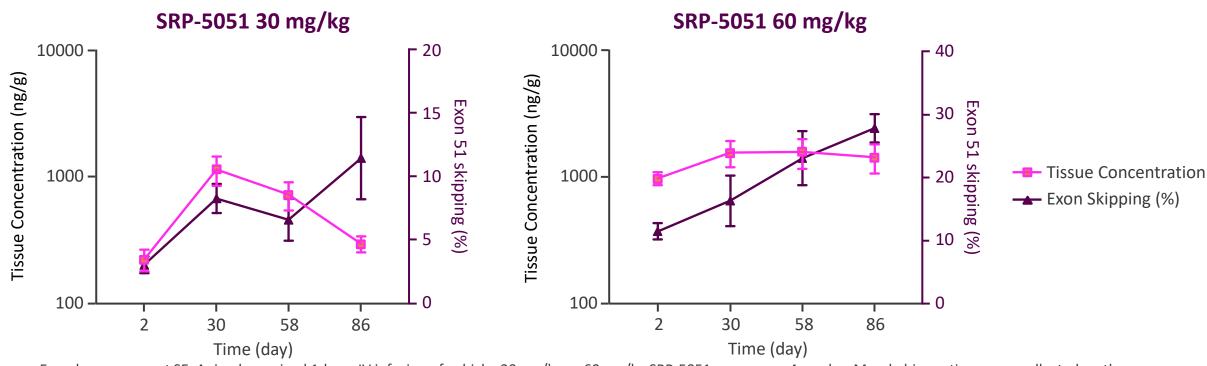
Tissue PK of SRP-5051 after Single Dose in Nondystrophic Nonhuman Primates



Error bars represent SE. Animals received a single 1-hour IV infusion of SRP-5051 at dose levels of 30 and 60 mg/kg. Blood samples were collected on Day 1: pre-dose and 1, 2, 4, 8, 12, 16, and 24 hours post-infusion. Muscle samples were collected on days 2, 5 (only for the 30 mg/kg group), 10, 15, 22 and 28 by biopsy. After day 10, tissue concentration for the 30 mg/kg dose was below the limit of quantification.

Despite a short plasma half-life, SRP-5051 was observed in muscles for days after dosing

PK/PD of SRP-5051 after Single Dose in Nondystrophic Nonhuman Primates



Error bars represent SE. Animals received a single 1-hour IV infusion of SRP-5051 at dose levels of 30 and 60 mg/kg. Blood samples were collected on Day 1: pre-dose and 1, 2, 4, 8, 12, 16, and 24 hours post-infusion. Muscle samples were collected on days 2, 5 (only for the 30 mg/kg group), 10, 15, 22 and 28 by biopsy. After day 10, tissue concentration for the 30 mg/kg dose was below the limit of quantification. 2-way ANOVA followed by Sidak's multiple comparison test used to compare exon skipping at different sampling times to earliest time point.

Single dose of SRP-5051 results in muscle tissue accumulation and exon 51 skipping that last for at least 28 days

PK/PD of SRP-5051 after Q4W Repeat Dosing for 12 weeks in Nondystrophic Nonhuman Primates

Error bars represent SE. Animals received 1-hour IV infusion of vehicle, 30 mg/kg or 60 mg/kg SRP-5051 once every 4 weeks. Muscle biopsy tissue was collected on the second day after each infusion.

- Tissue exposure and exon 51 skipping was dose-dependent
- Cumulative exon-skipping was observed at the end of the study
- No safety signals were detected after 12 weeks of dosing

Conclusions

- The PK/PD of SRP-5051, a peptide-conjugated PMO, was evaluated in non-dystrophic nonhuman primates
- After a single injection of SRP-5051, a dose dependent and sustained exposure in muscle tissue was observed for days
 - Despite the short plasma half-life, quantifiable tissue exposure persisted for 10 days and 28 days for the 30 and 60 mg/kg dose groups; respectively
 - This clearly demonstrates the role of SRP-5051 tissue exposure to drive the PD effect
- The sustained exon skipping observed after a single dose of SRP-5051 supports the Q4W dosing regimen currently being studied in the clinic
 - A single dose of SRP-5051 resulted in sustained exon 51 skipping that was maintained for at least 28 days
- Repeat Q4W dosing of SRP-5051 for 12 weeks, demonstrate cumulative exon-skipping effect that increased after each infusion
- SRP-5051 appeared to be well tolerated after 12 weeks of dosing
- These studies further support the Q4W clinical investigation of SRP-5051
 - A phase 2 multiple-ascending-dose study is currently ongoing (NCT04004065)

Questions?

Please direct any questions you may have to the Sarepta Medical Information team at medinfo@sarepta.com