Delay of Loss of Ambulation with Eteplirsen Versus Standard of Care in Duchenne Muscular Dystrophy

Joel Iff¹, George Bungey², Abby Paine², Bao Han¹, Heather Gordish-Dressman³, Erik Henricson⁴, Craig McDonald⁴

¹Sarepta Therapeutics Inc, Cambridge, Massachusetts, USA. ²DRG Abacus, Part of Clarivate, London, UK. ³Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington DC, USA. ⁴University of California, Davis, California, USA.

Presented at the 2021 Muscular Dystrophy Association Virtual Clinical & Scientific Conference, March 15–18, 2021

DISCLOSURES

- J. Iff is an employee of Sarepta Therapeutics, Inc. and may own stock/options in the company
- G. Bungey at the time of the study was an employee of DRG Abacus
- A. Paine is an employee of Zedediah Consulting and partner of DRG Abacus
- B. Han is an employee of Sarepta Therapeutics, Inc. and may own stock/options in the company
- H. Gordish-Dressman is the co-founder of TRINDS, LLC
- E. Henricson reports consulting fees (Sarepta Therapeutics, Inc.)
- C. McDonald reports consulting (Astellas/Mitobridge, Bristol-Myers Squibb, Capricor, Catabasis Pharmaceuticals, Edgewise Therapeutics, Eli Lilly, Epirium Bio (formerly Cardero Therapeutics), Gilead, Halo Therapeutics, Italfarmaco, Novartis, Pfizer, Prosensa, PTC Pharmaceuticals, Santhera Pharmaceuticals, and Sarepta Therapeutics, Inc.); research funding, principal investigator, and speaking fees (Sarepta Therapeutics, Inc.).
- This study was funded by Sarepta Therapeutics, Inc.

AGE AT LOSS OF AMBULATION FOR PATIENTS TREATED WITH ETEPLIRSEN VS SOC

OBJECTIVE

To estimate the treatment benefit of eteplirsen vs SOC for time to loss of ambulation using a post-hoc analysis of individual patient level data

Abbreviations: SOC, standard of care

METHODOLOGY

Inclusion criteria

Amenable to exon-51 skipping

Receiving treatment with eteplirsen or SOC/placebo

Receiving steroids for ≥30% of the study

Ambulatory at baseline visit

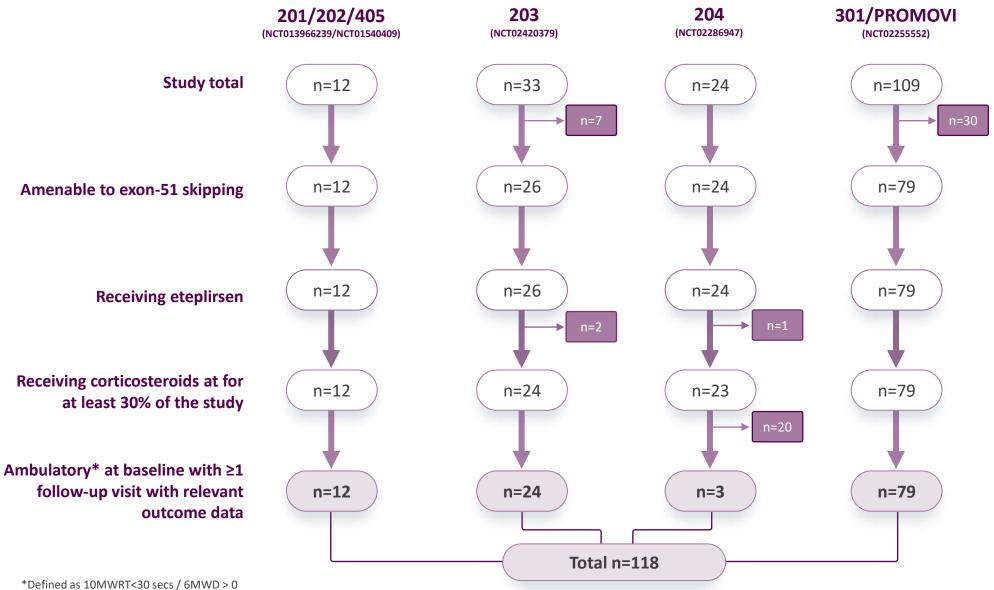
Sensitivity analysis

SOC group includes all *genotyped* CINRG patients who were ambulatory at baseline, excluding skip exon-44 and del_3-7

Statistical analysis

	_	

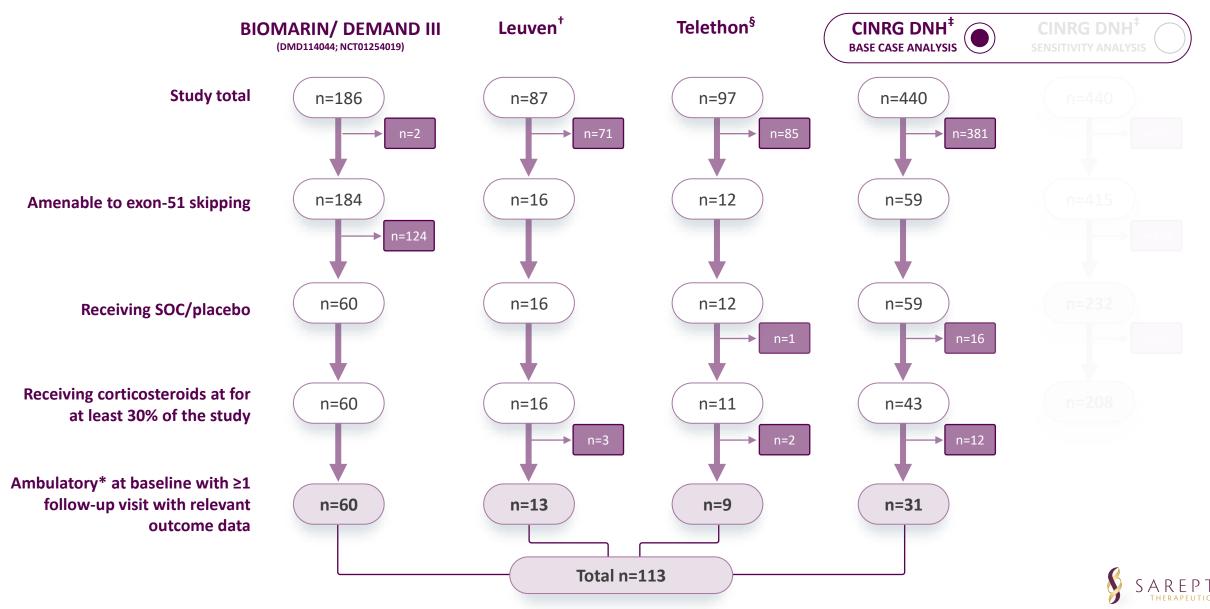
Kaplan Meier curves were constructed from the patient data sets to provide a visual representation of the proportion of patients who experienced LOA or were censored over time (i.e. did not experience an event before the end of the study / were lost to follow-up / withdrew).


A Cox proportional hazards model was used to calculate a hazard ratio to compare the difference in treatment effect between eteplirsen and SOC over time. A Cox model is a widely used, standard statistical approach for analysing survival time data, e.g. time to LOA.

Definition of LOA

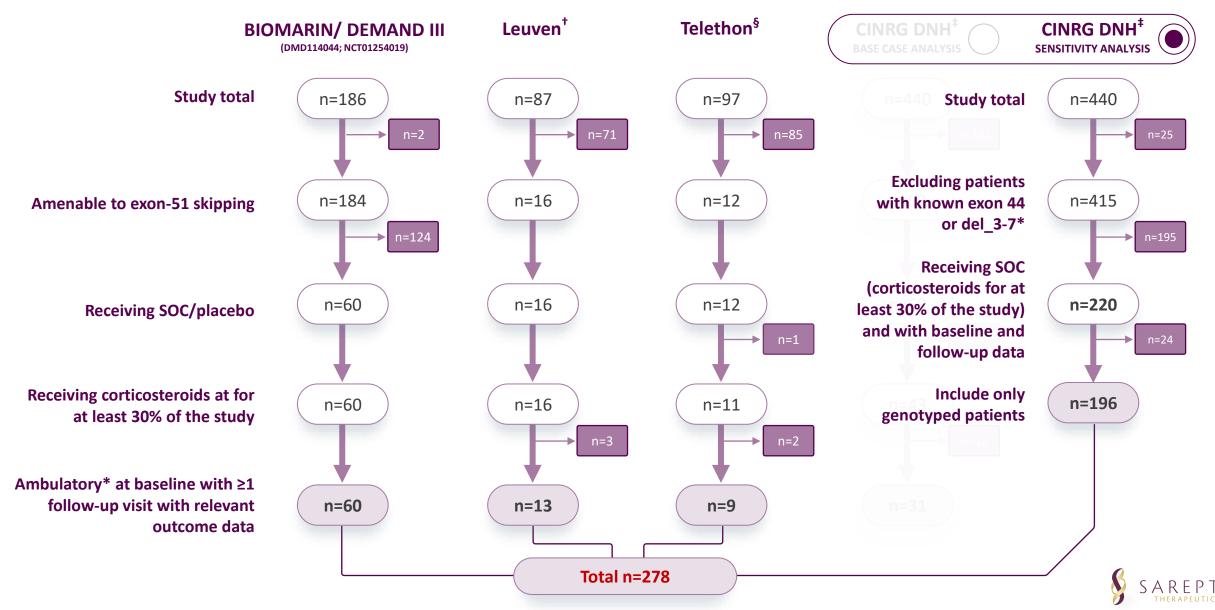
- Loss of ambulation (LOA) was defined according to a combination of 10m walk/run time ≥30s and 6MWD = 0m (or inability to complete the tests)
 - For patients with both outcomes available, both outcomes had to be satisfied to indicate loss of ambulation
 - In the eteplirsen trial datasets, a rate limiting cell value of 30s was recorded by clinicians if the patient failed the test
 - In the CINRG dataset LOA was confirmed by ensuring the variable measuring velocity to complete 10m walk run = 0 m/s
- Time to wheelchair use was used for the 405 chart review data, as 10m walk/run time was not available
 - Time to LOA based on this definition aligned with time to LOA based on 10m walk/run time for the 2 patients in the 405 chart review who had lost ambulation during the 201/202 study
- Outcomes were checked at prior and subsequent visits to LOA event to prevent confounding of missing data/fractures

PATIENT SELECTION – ETEPLIRSEN-TREATED PATIENTS



SAREPTA THERAPEUTICS

Defined as TOMMAL<20 Secs / DIMMAD > 0

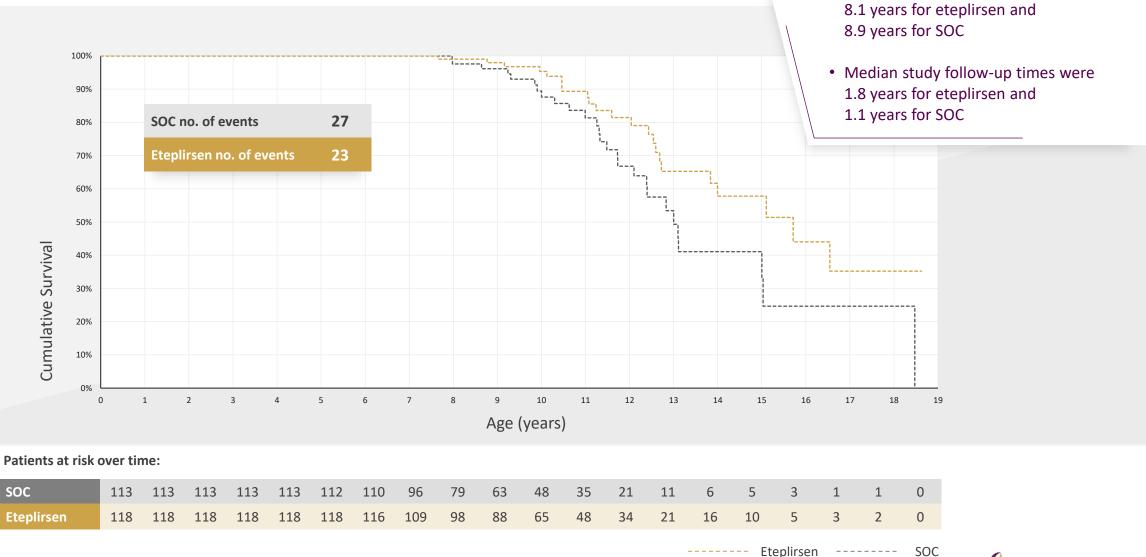

Abbreviations: 6MWD, six-minute walk distance; 10MWRT, ten-metre walk/run time

PATIENT SELECTION – SOC

*Defined as 10MWRT<30 secs / 6MWD > 0; *Leuven NMRC Registry; §Italian DMD Registry; *CINRG DNH, The Cooperative International Neuromuscular Research Group Duchenne Natural History)

PATIENT SELECTION – SOC

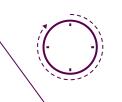
*Defined as 10MWRT<30 secs / 6MWD > 0; †Leuven NMRC Registry; §Italian DMD Registry; ‡CINRG DNH, The Cooperative International Neuromuscular Research Group Duchenne Natural History)


COMPARISON OF BASELINE CHARACTERISTICS AT STUDY ENTRY (BASE CASE ANALYSIS)

Outcome		Eteplirsen n=118	SOC/Placebo n=113		
Race , n (% of eligible patients)	White	100 (84.7%)	69 (61.1%)		
	Black of African American	3 (2.5%)	1 (0.9%)		
	Pacific Islander	2 (1.7%)	0 (0%)	Eteplirsen patients	
	Asian	9 (7.6%)	16 (14.2%)	were significantly older than SOC at	
	Other	4 (3.4%)	3 (2.7%)	start and end of study	
	Unknown	0 (0%)	24 (21.2%)*		
Baseline age, years	Mean (SD)	8.68 (2.42)	7.85 (2.30)		
	Median [IQR]	8.61 [2.88]	7.49 [3.10]	V	
Age at last study visit, years	Mean (SD)	10.73 (2.74)	9.73 (2.57)		
	Median [IQR]	10.52 [3.40]	9.60 [3.93]		
Ambulatory status at initial visit	Ambulatory	118 (100%)	113 (100%)		
	Non-ambulatory	0 (0%)	0 (0%)	Overall, corticosteroid	
Total time on treatment during study, days	Mean (SD)	748 (440)	687 (589)	use was similar between the	
	Median [range]	665 [160-2956]	336 [84-2879]	treatment groups	
Corticosteroid regimen , n (%)	Prednisone or prednisolone (daily)	53 (44.9%)	18 (15.9%)		
	Deflazacort (daily)	28 (23.7%)	47 (41.6%)		
	Prednisone or prednisolone (intermittent)	13 (11.0%)	17 (15.0%)		
	All others (including unknown)	24 (20.3%)	31 (27.4%)		
Treatment exposure, patient years	Eteplirsen	241.8	0	•	

*Note that race data was not available for any patients in the Leuven and TELETHON SOC studies

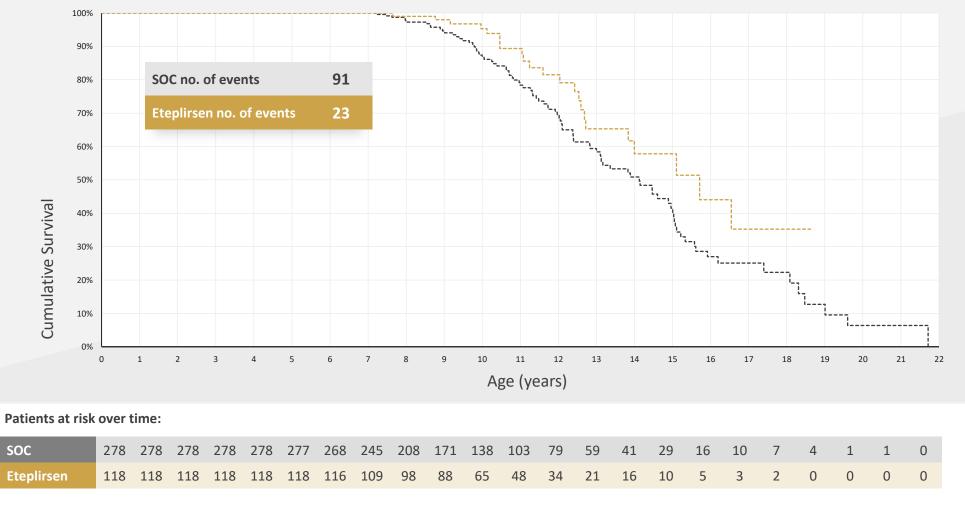
AGE AT LOA – BASE CASE ANALYSIS KAPLAN-MEIER CURVES


SAREPTA

• Maximum study follow-up times were

AGE AT LOA – BASE CASE ANALYSIS MEDIAN AGE AT LOA AND COX MODEL RESULTS

Treatment	Median age at event (K-M estimate), years (95% CI)	Cox model HR	95% Cl - lower	95% Cl - upper	P value
Eteplirsen	15.7 (12.7, NE)	0.53	0.30	0.93	0.027
SOC	13.0 (12.1, 15)				


- Time to LOA was significantly longer in the eteplirsen treatment group
- Tests of proportion hazards assumption suggest assumption is valid (e.g. p-value=0.86 for Schoenfeld residual)
- Median age at event in SOC group was similar to the 13.40 years identified in a broader population of patients from CINRG¹

Eteplirsen treatment was associated with a statistically significant 47% risk-reduction of LOA vs SOC across the lifespan - translating to ~21% longer in ambulation

AGE AT LOA – SENSITIVITY ANALYSIS KAPLAN-MEIER CURVES

----- Eteplirsen ----- SOC

AGE AT LOA – SENSITIVITY ANALYSIS MEDIAN AGE AT LOA AND COX MODEL RESULTS

Treatment	Median age at event (K-M estimate), years (95% CI)	Cox model HR	95% Cl - lower	95% Cl - upper	P value
Eteplirsen	15.7 (12.7, NE)	0.62	0.39	0.99	0.045
SOC	14.1 (13.0, 15.0)				

- Time to LOA was significantly longer in the eteplirsen treatment group
- Tests of proportion hazards assumption suggest assumption is valid (e.g. p-value=0.66 for Schoenfeld residual)
- Median age at event in SOC group was similar to the 13.40 years identified in a broader population of patients from CINRG (McDonald 2018; Lancet 2018; 391:451-461)

DISCUSSION

Eteplirsen treatment was associated with increased median age at loss of ambulation by 2.7 years

• 15.7 vs 13.0 years for eteplirsen vs SOC

Eteplirsen treatment was associated with a statistically significant 47% risk-reduction of LOA vs SOC across the lifespan

Median age at loss of ambulation in SOC group was similar to the 13.40 years identified in a broader population of patients from CINRG¹

Results are robust to the inclusion of all *genotyped* CINRG patients who were ambulatory at baseline in SOC group

CONCLUSION

LOA is significantly delayed in patients treated with eteplirsen vs SOC

QUESTIONS

